Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 1:
c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
c,xy-2x+5y-12=0
xy-2x+5y-12+2=0+2
xy-2x+5y-10=2
xy-2x+5y-5.2=-2
x.(y-2)+5.(y-2)=2
(y-2).(x+5)=2
Sau đó bạn tự lập bảng
Bài 1 : Cho (m+1)x+(m-2)y=3 (d)
a, Tìm m để (d) đi qua A(-1;-2)
b, Tìm m để (d) cắt tung độ tạo thành tam giác có S=9/2
Bài 2:Tìm 3 số nguyên tố mà tích của chúng bằng 5 lần tổng của chúng
Bài 2: Giải phương trình
a, \(3x^2+4x+10=2\sqrt{14x^2-7}\)
b, \(\sqrt{3x-5}+\sqrt{7-3x}=x^2-20x+22\)
Bài 1:
a,Tìm các số tự nhiên a và b biết:a x b=3075 và ƯCLN(a,b)=25
b,Tìm các số tự nhiên a,b biết:a x b=360 và BCNN(a,b)=60
Bài 2 Tìm số nguyên tố n,biết
a,1+2+3+.....+n=300
b,2+4+6+....+2n=210
c,1+3+5+7+......+(2n+1)=225
Bài 1 : Tìm a,b,c,d
a)a.b=-35;b.c=7 và a.b.c=356
b)abcd = 120 ; abc=-30 ; ab=-6 và bc=-15
Bài 2 :Tìm các số nguyên a
a) a+2 là ước của 7
b) 2a là ước của -10
c)2a +1 là ước của 12
Bài 3:Tìm các số nguyên a
a)a-5 là bội của a+2
b)2a + 1 là bội của 2a -1
Bài 4 :
a) 3n+2chia hết cho n-1
b) 3n +24 chia hết cho n-4
Bài 5:
a)(n+5)2 - 3(n+5) +2 là bội của n+5
b,(n+7)2-6(n+7)+14 là bội của n+7
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 1:tìm gtnn của
A=3+(x-7)^2
B=|2x-1|-3
C=7+ căn bậc 2 của 2
Bài 2 tìm gtln của
A=7-(x+3)^2
B=11-|2x-5|
C=25-căn bậc,2 của x+3
Bài 1: cho A = 999......9 (n chữ số 9). So sánh tổng các chữ số của A và tổng các chữ số của A^2.
Bài 2: Tìm n thuộc Z để n^2+9n+7 chia hết cho n+2.
Bài 3: Tìm các ước chung của 12n+1 và 30n+2.
Bài 4: So sánh A và 1/4 biết:
A= 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3.
Bài 5: So sánh 1/40 và B=1/5^3 + 1/6^3 + ... + 1/2004^3.
Bài 6: Tìm x, y biết:
x/2 = y/5 và 2x-y=3
Bài 7: Tìm x, y biết:
x/2=y/5 và x . y = 10