Cho B = 5/12. (-24)/2x-1+16.3/4x-2
a, Rút gọn B
b,Tìm x thuộc Z để B thuộc Z
c,tìm x thuộc Z để B lớn nhất
cho A= n+1 / n-2
a, tìm n thuộc z để A thuộc z
b , tìm n thuộc z để A lớn nhât
cho B = 5/12 nhân -24 / 2x -1 + 16 nhân 3/ 4x -2
a. rút gọn B
b. tìm x thuộc z để B lớn nhất
c tìm x thuộc z để B thuộc z
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
Bài 1: Cho phân thức: A= 2x^2-4x+8/x^3+8
a) Rút gọn A
b) Tính giá trị của A, biết |x| = 2
c) Tìm x để A = 2
d) Tìm x để A < 0
e) Tìm x thuộc Z để A có giá trị nguyên
Bài 2: Cho B= x^2-4x+4/x^2-4
a) Rút gọn B
b) Tính giá trị của B, biết |x-1| = 2
c) Tìm x để B = -1
d) Tìm x để B < 1
e) Tìm x thuộc Z để B nhận giá trị nguyên
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
Bài 2: Cho biểu thức B=(\(\dfrac{3X}{2X+3}\)+\(\dfrac{4}{3-2x}\)-\(\dfrac{4x^2-23x-12}{4x^2-9}\)):(\(\dfrac{x+3}{2x+3}\) )với x khác 3/2;-3/2;-3
a) Rút gọn B
b) Tính giá trị của B biết 2x^2+7x+3=0
c) Tìm x thuộc Z để B thuộc Z
d) Tìm x để |B|<1
CỨU MÌNH CÂU d NHA MÌNH CẢM ƠN!
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
Cho A = 1/5 nhân 225/8+2 + 3/14 nhân 196/3x+6
(x thuộc z; x khác -2)
a) Rút gọn A
b) Trong các giá trị nguyên A tìm giá trị lớn nhất, các giá trị nhỏ nhất
c) Tìm x thuộc z để A thuộc z
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
cho A = (x+2/3x+2/x+1-3) : 2-4x/x+1 - 3x+1-x^2/3x a) rút gọn A b) tìm A khi x=6007 c) tìm x để A âm d) Tìm x thuộc Z để A thuộc Z
\(A=\dfrac{9x^2-4}{4x^2-1+\left(2x+1\right)\left(x-1\right)}\)
a) Rút gọn A.
b) x bằng mấy để A > 0
c) Tìm x thuộc Z để A thuộc Z.
a. A=(3x-2)(3x+2)/(2x-1)(2x+1)+(2x+1)(x-1)=(3x-2)(3x+2)/(2x+1)(3x-2)=3x+2/2x+1
b. A>0
=>3x+2 lớn hơn hoặc bằng 2x+1
=>x lớn hơn hoặc bằng -1
c. Để A thuộc z thì 3x+2 chia hết cho 2x+1
=>x = -1/2
= 1+ x+1/2x+1 = 1+ 2x+1-x/2x+1=1+ 2x+1/2x+1 -x/2x+1
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z
a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
b) Để A nguyên thì \(-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)