Tìm GTNN của biểu thức Q=\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\)
1. Tìm giá tị nhỏ nhất (GTNN) của biểu thức:
a. \(M=|x+\frac{15}{19}|\)
b. \(N=\left|x-\frac{4}{7}\right|-\frac{1}{2}\)
2. Tìm giá trị lớn nhất (GTLN) của biểu thức sau:
a. \(P=-\left|\frac{5}{3}-x\right|\)
b. \(Q=9-\left|x-\frac{1}{10}\right|\)
3. Tìm x, y biết:
a. \(\left|x-y-5\right|+2007\cdot\left(y-3\right)^{2004}=0\)
b. \(\left(x+y\right)^{2016}+2007\cdot\left|y-1\right|=0\)
c. \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
3a) Ta có:
|x - y - 5| + 2007.(y - 3)2004 = 0
<=> \(\hept{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=y+5\\y=3\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\y=3\end{cases}}\)
b) Ta có :
(x + y)2016 + 2007.|y - 1| = 0
<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
c) (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Cho x,y>1.Tìm GTNN của biểu thức:
\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Biến đổi ta được: \(P=\frac{x^2}{x-1}+\frac{y^2}{y-1}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{x^2}{x-1}+\frac{y^2}{y-1}\ge\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\)
Lại có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2\)
Tương tự: \(\frac{y}{\sqrt{y-1}}\ge2\Rightarrow\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\ge8\)
Vậy Min P =8 khi và chỉ khi x=y=2
\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(kết hợp áp dụng bất đẳng thức Bunyakovsky dạng phân thức)
Đặt a + b = s
Ta có: \(\left(s-4\right)^2\ge0\Leftrightarrow s^2-8s+16\ge0\Leftrightarrow s^2\ge8\left(s-2\right)\Leftrightarrow\frac{s^2}{s-2}\ge8\)
Vậy GTNN của P là 8 khi x = y = 2
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Tìm GTNN của biểu thức: P = \(\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Điều kiện: \(x;y>1\)
\(A=\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(x+y=a\left(a>2\right)\)
\(\Rightarrow A=\dfrac{a^2}{a-2}=\dfrac{8\left(a-2\right)+\left(a^2-8a+16\right)}{a-2}=8+\dfrac{\left(a-4\right)^2}{a-2}\ge8\)
Dấu "=" xảy ra khi x = y = 2
Vậy \(Min_A=8\Leftrightarrow x=y=2\)
a) Tìm GTNN của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b)Tìm GTLN của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Tìm gtnn của biểu thức \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Trong đó x, y là số thực lớn hơn 1
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Áp dụng bđt AM-GM ta có
\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)
Ta có \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng bđt AM-GM ta có
\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)
Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ
\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)
\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Không phải ngược đâu nha mọi người,dấu bằng không xảy ra nhé!
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Bài này thì AM-GM thôi
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng BĐT AM-GM cho 3 số không âm ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)
\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :
\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)
\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)
Tìm GTNN của biểu thức :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2