Tìm x, y thỏa mãn 3x + y + 2x - 2y - 1 = 0 và 2x(x+y) = 2
tìm x,y thỏa mãn 3x^2+y^2+2x-2y-1=0
Tìm x,y thỏa mãn \(3x^2+y^2+2x-2y-1=0\) và \(2x^2+2xy=2\)
cho x,y thỏa mãn x^2 +5y^2 -4xy+2x-8y+1=0. tìm GTLV và GTNN của A= 3x-2y
(x-2y-2)2+(y-6)2 =39-2A
A=< 39/2, max A là 39/2 khi x =14 và y =6
Tìm x,y thỏa mãn 3x2+y2+2x-2y-1=0 và 2x(x+y)=2 ai tich x,y hộ mik với
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2x\left(x+y\right)-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow y=x+1\)
Thế vào \(x\left(x+y\right)=1\)
\(\Rightarrow x\left(2x+1\right)=1\)
\(\Leftrightarrow2x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
1)Tìm x,y thỏa mãn:
x2-3xy+2y2 = 0 và 2x2 - 3xy + 5 = 0
2) Tìm x,y thỏa mãn:
(x-y)2 + 3(x-y) = 4 và 2x + 3y = 12
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
cho các số thực x,y thỏa mãn x^2+5y^2-4xy+2x-8y+1=0 tìm giá trị lớn nhất và nhỏ nhất của A=3x-2y
Tìm x, y thỏa mãn các đẳng thức: x^3 + y^3 - 8xy√2(x^2 + y^2) + 7x^2y + 7xy^2 = 0 và √y - √(2x - 3) + 2x = 6