Những câu hỏi liên quan
thảo nguyễn thị
Xem chi tiết
Khiết Hảo
Xem chi tiết
Đinh Thùy Linh
3 tháng 6 2016 lúc 23:57

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

Bacdau)
29 tháng 5 2022 lúc 6:48

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)

Bacdau)
29 tháng 5 2022 lúc 6:48

Ta có : \((x-\dfrac{1}{\sqrt{3}})^2+(y-\dfrac{1}{\sqrt{3}})^2+(z-\dfrac{1}{\sqrt{3}})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{\sqrt{3}}(x+y+z)+1\ge0\)

\(=>x^2+y^2+z^2+1\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)

\(=>1+1=2\ge\dfrac{2}{\sqrt{3}}(x+y+z)\)

\(=>x+y+z\le\sqrt{3}\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.\sqrt{3}^2-\dfrac{1}{2}=\dfrac{2}{2}=1\)

hong nguyen
Xem chi tiết
Đỗ Ngọc Giang
Xem chi tiết
Phạm Thị Minh Hạnh
9 tháng 5 2019 lúc 23:15

 Mình nghĩ thế này ạ

xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5

Mình áp dụng bất đẳng thức này nhé :)
Ta có:  \(\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)

\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)

Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)

\(x^2+z^2\ge2xz\forall x,z\)(3)

Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)

\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)

\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)

nhân cả 2 vế với 2 nè

\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)

\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc 

Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1

IDO cường nứng
Xem chi tiết
Bờ lều bờ lếu
Xem chi tiết
Incursion_03
1 tháng 4 2019 lúc 22:40

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

Bờ lều bờ lếu
2 tháng 4 2019 lúc 23:35

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

Bảo Trần Thành
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 11:26

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

Khôi Bùi
19 tháng 5 2021 lúc 11:30

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

....
Xem chi tiết
missing you =
2 tháng 7 2021 lúc 17:24

b, đk: \(x\ge1,y\ge2,z\ge3\)

\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)

B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)

\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)

\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)

dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)

 

Nguyễn Việt Lâm
2 tháng 7 2021 lúc 17:31

Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0

\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)

\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)

\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)

....
3 tháng 7 2021 lúc 15:56

đề bài là tìm gt lớn nhất nhé mọi người,tớ ghi nhầm

Giao Khánh Linh
Xem chi tiết
Nguyễn Linh Chi
28 tháng 11 2019 lúc 10:36

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

Khách vãng lai đã xóa