1) Tìm x, y,z \(\in\) N biết
x + y + z = xyz
Tìm gtnn của A=(x+y)(y+z) biết x,y,z\(\in\)R và xyz(x+y+z)=1
\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)
Tìm \(x,y,z\in N\)* biết: \(xy+yz+zx=2+xyz\)
Tìm x+y+z (x,y,z thuộc N* biết: x+y+z=xyz
,tìm x,y,z biết:
1) x+y-z=y+z-x=x+z-y=xyz
tìm x,y,z biết
6(x-1/y)=3(y-1/z)=2(z-1/x)=xyz-1/xyz
Khó đấy mấy bạn giúp mình với
tìm x,y,z biết x+y-z=y+z-x=z+x-y=xyz
Ta có: x+y-z=y+z-x <=> 2x=2z => x=z
Lại có: y+z-x=z+x-y <=> 2x=2y => x=y
=> x=y=z
Do x+y-z=xyz => x=x3 => x(x2-1)=0 <=> x(x-1)(x+1)=0
=> x1=y1=z1=0 ; x2=y2=z2=1 ; x3=y3=z3=-1
) Tìm x, y,z \(\in\) N biết
x + y + z = xyz
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
Tìm x,y,z biết \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
\(ĐK:x,y,z\ne0\)
Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)
\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0
Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)
Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)
Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).
Nhìn lozic qué bạn ey!!!