Những câu hỏi liên quan
Nguyễn Ngọc Thảo
Xem chi tiết
Cô Hoàng Huyền
9 tháng 2 2018 lúc 15:44

Câu hỏi của duy phạm - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

Bình luận (0)
LoHoTu
Xem chi tiết
duy phạm
Xem chi tiết
Cô Hoàng Huyền
9 tháng 2 2018 lúc 15:43

A A B B C C M M D D E E F F

a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)

\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)

Vậy nên DE + DF = 2AM.

b) Theo định lý Ta let ta có:

\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)

Bình luận (0)
:)))))))
Xem chi tiết
:)))))))
31 tháng 1 2021 lúc 18:32

tớ nhầm chương sorry

Bình luận (0)
slyn
Xem chi tiết
Thùy Lê
Xem chi tiết
Lê Chí Trung
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết

 qua B và C kẻ đường // (d) cắt AM tại P & Q => BPCQ là hình bình hành => PM = QM 
ta có AB/AE = AP/AN 
AC/AF = AQ/AN 
=> AB/AE + AC/AF = AP/AN + AQ/AN = ( AM - PM)/AN + ( AM + QM)/AN 
= 2AM/AN ( do PM = QM) 

Bình luận (0)
Thắng  Hoàng
8 tháng 10 2017 lúc 21:28

=2AM/AN nha bạn^_^

Bình luận (0)
Hoàng_Linh_Nga
8 tháng 10 2017 lúc 21:35

mình cũng vướng bài này ! 

Bình luận (0)
Hoang Huynh
Xem chi tiết
Akai Haruma
3 tháng 5 2018 lúc 16:10

Lời giải:

Bạn tự vẽ hình nhé.

a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)

VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)

\(\Rightarrow \triangle AMB\) cân tại $M$

\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)

Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)

Xét tam giác $MBE$ và $MFC$ có:

\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)

b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)

Xét tam giác $ABC$ và $AFE$ có:

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)

\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

c)

Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)

Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)

Xét tam giác $AMI$ và $AHM$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)

\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)

Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)

Bình luận (0)