Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long
Xem chi tiết
Phạm minh thu
14 tháng 12 2016 lúc 16:54

đề bài sai rồi

Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)

=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)

=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab

=(a2+ab+b2)(a-b+1)-24ab

mà a-b=7=>A=8a2+8ab+8b2-24ab

=8a2-16ab+8b2

=8(a-b)2=8 . 72=8 . 49=392

chan mi un
Xem chi tiết
mình đổi tên nick này cò...
Xem chi tiết
quản đức phú
Xem chi tiết
Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 7:47

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

Truong_tien_phuong
Xem chi tiết
Sáng tạo Thú vị Độc đáo
24 tháng 4 2017 lúc 11:34

Ta có:

a+b-c/c = b+c-a/a = c+a-b/b

=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2

=>a+b-c/c  + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b

=>a+b+c/c = a+b+c/a =a+b+c/b

* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)

                           b= 0-a-c= -(a+c)

                           c= 0-b-a= -(b+a)

Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được

B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b

                                                                                =(-c)/a * (-b)/c * (-a)/b =-1

* Nếu  a+b+c\(\ne\)0 thì a=b=c

Khi đó

B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8

Vậy B=-1 hoặc B=8

nhớ k nha bạn

_Sóy Trắng_
1 tháng 3 2018 lúc 22:40

B=1 hoặc B=8 nha!

xin lỗi

Khách vãng lai đã xóa
Nguyễn Ánh Nhi
Xem chi tiết

Ta có:

\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)

\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)

\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)

\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Đồng thời:

\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự:

\(b^2+1=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=\left(a+c\right)\left(b+c\right)\)

Từ đó:

\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)

Lăng Nhược Y
Xem chi tiết
Cù Hương Ly
Xem chi tiết
Sắc màu
19 tháng 8 2018 lúc 15:29

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1