tam giác đều ABC trọng tâm G. Từ O \(\ne\)G trong tam giác kẻ OG cắt BC,CA,AB tại A',B',C'. Tính \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}\)
Cho tam giác ABC, AA1 ; BB1 ; CC1 đồng quy tại O bất kì nằm trong tam giác. Gọi G là trọng tâm, đường thẳng OG thứ tự cắt BC, CA, AB tại A', B', C'. Tính \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}\)
mk ko biết vẽ.
1a/ Cho tam giác đều ABC, trọng tâm G. O là một điểm thuộc miền trong tam giác và O khác G. Đường thẳng OG cắt các đường thẳng BC,BA và AC theo thứ tự ở A',B',C'. Chứng minh rằng \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}=3\)
b/ Từ một điểm P thuộc miền trong của tam giác đều ABC. Hạ các đường vuông góc PD,PE và PF xuống các cạnh BC,CA và AB. Tính \(\frac{PD+PE+PF}{BD+CE+AF}\)
a, https://olm.vn/hoi-dap/question/1030999.html
b,\(\frac{\sqrt{3}}{3}\)
CM PD+PE+PF=AH(đường cao)=\(\frac{\sqrt{3}AB}{2}\)
CM BD+CE+AF=\(\frac{3AB}{2}\)
D/s:\(\frac{\sqrt{3}}{3}\)
1. Tam giác ABC, G là trọng tâm tam giác và M bất kì trong tam giác, Đường thẳng qua M,G cắt BC,CA,AB tại A';B';C'. Chứng minh:
\(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.
Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)
Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được
\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)
Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)
\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)
+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.
Áp dụng ĐL Thales, ta có các tỉ số:
\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)
Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)
+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).
Cho tam giác ABC, G là trọng tâm, M là một điểm nằm trong tam giác \(\left(M\ne G\right)\) . Đường thẳng MG cắt các đường thẳng AB, BC, CA lần lượt tại C', A', B'. Chứng minh rằng: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
TA CÓ
\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)
\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)
DỰNG GH VÀ MD VUÔNG GÓC VỚI BC
AD ĐỊNH LÍ TA LÉT
=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)
MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)
=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)
TỪ 1 ,2,3
=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)
cho tam giác ABC đều. Gọi G là trọng tâm. Olaf 1 điểm nằm trong tam giác(O\(\ne\)G) Đường thẳng OG cắt BC,AB,AC tại A',B',C'
tính \(\frac{A'O}{A'G}+\frac{B'O}{B'G}+\frac{C'O}{C'G}\)
1 Cho tam giác ABC, I thuộc AB, K thuộc AC kẻ IM//BK, M thuộc AC, ke KN//CI , N thuộc AB
Chứng minh MN // BC
2 Cho tam giác ABC trọng tâm G một đường thẳng qua G cắt AB tại C' cắt AC tại B' cat tia doi cua CB tai A'
a Chứng minh \(\frac{1}{GA'}+\frac{1}{GB'}=\frac{1}{GC'}\)
a. Quang tự vẽ hình nhé.
Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)
Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)
Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.
Cho tam giác ABC, G là trọng tâm, O là điểm bất kì trong tam giác. Chứng minh: OA+OB+OC \(\le\) GA+GB+GC+GO
sorry , em ko bt làm vì em mới học lớp 5 thui ạ
Em cùng ý kiến vs cong chua anh trang
Cho tam giác ABC, G là trọng tâm, O là điểm bất kì trong tam giác. Chứng minh: OA+OB+OC \(\le\) GA+GB+GC+GO
Cho tam giác ABC vuông tại A, trung tuyến AD, trọng tâm G
a,Cho biết \(\frac{AB}{AC}=\frac{3}{4}\)và AD=5 tính diện tích tam giác ABC
b, Qua G kẻ đường thẳng cắt AB, AC lần lượt tại M,N. Chứng minh rằng \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
c,Kẻ các đường trung tuyến BE, CF của tam giác ABC Chứng minh rằng \(\sqrt{\frac{GA}{GD}}+\sqrt{\frac{GB}{GE}}+\sqrt{\frac{GC}{GF}}=\frac{3\sqrt{2}}{2}\)