Cho tam giác ABC , góc A= 90o, đểm M thuộc AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt BM tại H, cắt tia BA. Chứng minh rằng:
a) OA.OB=OC.OH
b) góc OHA có số đo không đổi
c) Tổng BM.BH+CM.CA không đổi
Cho tam giác ABC vuông tại A. Gọi M là một điểm di động trên AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh rằng:
a) OA.OB = OC.OH
b) Góc OHA có số đo không đổi
c) Tổng BM.BH + CM.CA không đổi
Cho tam giác ABC vuông tại A. GỌi M là điểm di động trên cạnh AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh:
a, OA.OB=OC.OH
b, góc OHA không đổi.
c, BM.BH+CM.CA không đổi.
Cho tam giác ABC , góc A= 90o, đểm M thuộc AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt BM tại H, cắt tia BA. Chứng minh rằng:
a) OA.OB=OC.OH
b) góc OHA có số đo không đổi
c) Tổng BM.BH+CM.CA không đổi
Cho tam giác ABC vuông ở A . Gọi M là điểm đi động trên AC . Từ C vẽ đường thẳng vuông góc với BM cắt tia BM tại H cắt tia BH tại O . CMR
a, OA.OB = OC.OH
b, Góc OHA không đổi
c, Tổng BM . BH + CM.CA không đổi
Cho tam giác ABC vuông tại A. Gọi M là một điểm di động trên AC. Từ C vẽ đường thẳng vuong góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh rằng:
a) OA.OB = OC.OH
b) Góc OHA có số đo không đổi
c) Tổng BM.BH + CM.CA không đổi
a: Xét ΔOHB vuông tại H và ΔOAC vuông tại A có
góc O chung
Do đo:ΔOHB\(\sim\)ΔOAC
Suy ra: OH/OA=OB/OC
=>OH/OB=OA/OC và \(OH\cdot OC=OA\cdot OB\)
b: Xét ΔOHA và ΔOBC có
OH/OB=OA/OC
góc HOA chung
Do đo: ΔOHA\(\sim\)ΔOBC
Suy ra: \(\widehat{OHA}=\widehat{OBC}\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc AB, HN vuông góc AC.
a)C/m:AM.AB=AN.AC
b)Cho AH=2cm, BC=5cm. Tính diện tích tứ giác AMHN
Bài 2: Cho tam giác ABC vuông tại A, M là điểm chuyển động trên cạnh AC. Từ C kẻ đường thẳng vuông góc với tia BM tại H, cắt tia BA tại O.CMR:
a)OA.OB=OC.OH
b)Số đo góc OHA không đổi
c)BM.BH+CM.AC không đổi
Cho tam giác ABC vuông tại A. GỌi M là điểm di động trên cạnh AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh:
a, OA.OB=OC.OH
b, góc OHA không đổi.
c, BM.BH+CM.CA không đổi.
a: Xét ΔOHB vuông tại H và ΔOAC vuông tại A có
góc O chung
Do đó ΔOHB\(\sim\)ΔOAC
Suy ra: OH/OA=OB/OC
hay \(OH\cdot OC=OA\cdot OB\)
b: Xét ΔOHA và ΔOBC có
OH/OB=OA/OC
góc HOA chung
Do đó: ΔOHA\(\sim\)ΔOBC
Suy ra: \(\widehat{OHA}=\widehat{OBC}\)
hay góc OHA không đổi
Cho tam giác ABC vuông tại A. Gọi M là 1 điểm di động trên cạnh AC, từ C vẽ đường thẳng vuông góc với BM và cắt BM tại H, cắt BA tại O. Chứng minh :
a, góc OHA có số đo không đổi
b, tổng BM.BH + CM.AC không đổi
helpppp
Tự vẽ hình nhé,khua ròi,không muốn mày mò,giờ mới rảnh nên dạo 1 vòng quanh olm :D
a
Xét \(\Delta\)BHO và \(\Delta\)CAO có:^O chung;^OAC=^OHB=900 => \(\Delta\)BHO ~ \(\Delta\)CAO ( g.g )
\(\Rightarrow\frac{HO}{AO}=\frac{OB}{OC}\Rightarrow\frac{OH}{OB}=\frac{AO}{OC}\)
Xét \(\Delta\)OAH và \(\Delta\)OCB có:^O chung;\(\frac{OH}{OB}=\frac{AO}{OC}\) => \(\Delta\)OAH ~ \(\Delta\)OCB ( g.g )
=> ^OHA=^OBC không đổi
b
tui có làm ở đây Câu hỏi của Hoàng Thanh - Toán lớp 8 - Học toán với OnlineMath
\(BM\cdot BH+CM\cdot CA=BC^2\) không đổi nha !!!
Cho tam giác ABC vuông tại A. M là điểm di động trên cạnh AC. Từ C kẻ đường thẳng vuông góc với tia BM tại H, cắt tia BA tại O. Chứng minh rằng:
a) OA.OB = OC.OH
b) góc OHA không đổi
c) BM.BH + CM.CA không đổi