tim x:\(\frac{5-3x}{7-2x}=\frac{6x-4}{1+4x}\)
tìm điều kiện xác định của biểu thức:
\(a)\frac{6x}{-\sqrt{x+7}}-\frac{3}{-5x-4}+\frac{\sqrt{x}}{-3x+2}\)
\(b)\frac{5-\sqrt{x}}{x+4}+\frac{\sqrt{x-2}-3}{-2x-10}\)
\(c)\frac{\sqrt{6x}}{-x-3}-\frac{4x}{2x+3}\)
\(d)\frac{\sqrt{2x-7}}{3x-4}-\frac{\sqrt{6x}}{x-3}+3x-1\)
a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)
c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)
d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)
a.\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
b.\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c.\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)
d.\(\left|x-4\right|+3x=5\)
a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(84x+63-90x+30=175x+140+315\)
93-6x=175x+455
-362=181x
x=-2
b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
1, Thực hiện tính cộng, trừ, nhân, chia các phân thức sau:
a,\(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b,\(\frac{2x+3}{4x^2y^2}:\frac{6x+9}{10x^2y}\)
c,\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
d,\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)
\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)
\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)
\(=\frac{2x-7-5+3x}{10x-4}\)
\(=\frac{5x-12}{10x-4}\)
Tìm x:\(a,\frac{6x-5}{-7}=\frac{5x-3}{-5}\\ b,\frac{12-7x}{-13}=\frac{4-3x}{-5}\\ c,\frac{2x+4}{7}=\frac{4x-2}{15}\)
a) \(\frac{6x-5}{-7}=\frac{5x-3}{-5}\)
=> -5(6x - 5) = -7(5x - 3)
=> -30x + 25 = -35x + 21
=> -30x + 25 + 35x - 21 = 0
=> (-30x + 35x) + (25 - 21) = 0
=> 5x + 4 = 0
=> 5x = -4
=> x = -4/5
b) \(\frac{12-7x}{-13}=\frac{4-3x}{-5}\)
=> -5(12 - 7x) = -13(4 - 3x)
=> -60 + 35x = -52 + 39x
=> -60 + 35x + 52 - 39x = 0
=> (-60 + 52) + (35x - 39x) = 0
=> -8 - 4x = 0
=> -8 = 4x
=> x = -2
c) \(\frac{2x+4}{7}=\frac{4x-2}{15}\)
=> 15(2x + 4) = 7(4x - 2)
=> 30x + 60 = 28x - 14
=> 30x + 60 - 28x + 14 = 0
=> 2x + 74 = 0
=> 2x = -74
=> x = -37
giải các phương trình và hệ phương trình sau
1 , 4 ( x + 5 ) ( x + 6 ) ( x + 10 ) ( x + 12 ) = 3x2
2 , ( 2x - 1 ) ( 4x + 5 ) ( 8x + 3 ) ( 16x - 15 ) = 99x2
3 ,( x - 1 ) ( x - 2 ) ( x - 4 ) ( x - 8 ) =\(\frac{10}{9}\) x2
4, \(\frac{3x}{x^2-x+4}\) + \(\frac{x}{2x^2-6x+8}\) = 1
5 , \(\frac{3x}{x^2-4x+1}\) - \(\frac{2x}{x^2+x+1}\) = \(\frac{8}{3}\)
6, \(\frac{3x}{x^2-3x+1}\) + \(\frac{7x}{x^2+x+1}\) = -4
7, \(\frac{4x}{4x^2-8x+7}\) + \(\frac{3x}{4x^2-10x+7}\)= 1
8, \(\frac{2x}{x^2-3x+1}\) + \(\frac{7x}{x^2+x+1}\) = 6
9, \(\frac{x^2-10x+15}{x^2-6x+15}\) - \(\frac{4x}{x^2-12x+15}\)= 2
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
\(\frac{x-3}{3xy}\)+ \(\frac{5x+3}{3xy}\)
\(\frac{5x-7}{2x-3}+\frac{4-3x}{2x-3}\)
\(\frac{3x+5}{7x-1}-\frac{6-4x}{7x-1}\)
\(\frac{11x-7}{3-5x}-\frac{6x+4}{5x-3}\)
\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(\frac{1}{2x-10}+\frac{2x}{3x^2-15x}\)
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
Giải phương trình :
1 ) 5( x - 2 ) = 3x + 10
2 ) x2( x - 5 ) - 4x + 20 = 0
3 ) \(\frac{3x+1}{4}+\frac{8x-21}{20}=\frac{3\left(x+2\right)}{5}-2\)
4 ) \(\frac{3}{4x-20}+\frac{7}{6x+30}=\frac{15}{2x^2-50}\)
1) Ta có: \(5\left(x-2\right)=3x+10\)
\(\Leftrightarrow5x-10-3x-10=0\)
\(\Leftrightarrow2x-20=0\)
\(\Leftrightarrow2\left(x-10\right)=0\)
Vì 2>0
nên x-10=0
hay x=10
Vậy: x=10
2) Ta có: \(x^2\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
Vậy: x∈{-2;2;5}
3) Ta có: \(\frac{3x+1}{4}+\frac{8x-21}{20}=\frac{3\left(x+2\right)}{5}-2\)
\(\Leftrightarrow\frac{5\left(3x+1\right)}{20}+\frac{8x-21}{20}-\frac{12\left(x+2\right)}{20}+\frac{40}{20}=0\)
\(\Leftrightarrow15x+5+8x-21-12\left(x+2\right)+40=0\)
\(\Leftrightarrow15x+5-8x-21-12x-24+40=0\)
\(\Leftrightarrow-5x=0\)
hay x=0
Vậy: x=0
4) ĐKXĐ: x≠5; x≠-5
Ta có: \(\frac{3}{4x-20}+\frac{7}{6x+30}=\frac{15}{2x^2-50}\)
\(\Leftrightarrow\frac{3}{4\left(x-5\right)}+\frac{7}{6\left(x+5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{9\left(x+5\right)}{12\left(x-5\right)\left(x+5\right)}+\frac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}-\frac{180}{12\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow9x+45+14x-70-180=0\)
\(\Leftrightarrow23x-205=0\)
\(\Leftrightarrow23x=205\)
hay \(x=\frac{205}{23}\)(tm)
Vậy: \(x=\frac{205}{23}\)
giải các hệ BPT sau:
a) \(\left\{{}\begin{matrix}5x-2>4x+5\\5x-4< x+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\)
h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
j) \(\left\{{}\begin{matrix}\frac{3x+1}{2}-\frac{3-x}{3}\le\frac{x+1}{4}-\frac{2x-1}{3}\\3-\frac{2x+1}{5}>x+\frac{4}{3}\end{matrix}\right.\)