chứng minh A = ( n2 + 2 ) . n2 + 2n + 2 không phải là số nguyên tố ( n thuộc N* )
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(n+3,2n+5)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
=> (2n + 6) - (2n + 5) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(n+3,2n+5) = 1
=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
Gọi d là UCLN của n + 3 và 2n + 5
=> n + 3 chia hết cho d và 2n + 5 chia hết cho d
Vì n + 3 chia hết cho d nên 2(n+3) chia hết cho d => 2n + 6 chia hết cho d
Vì 2n + 6 chia hết cho d , 2n + 5 chia hết cho d
=> 2n + 6 - (2n+5) chia hết cho d
=> 1 chia hết cho d
Mà d lớn nhất nên d = 1
Vì UCLN của n + 3 và 2n + 5 bằng 1 nên n + 3 và 2n+ 5 là 2 số nguyên tố cùng nhau
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
a= 1+2+3+4+......+n ( với a,b thuộc N)
b= 2n+1
Chứng minh a và b là 2 số nguyên tố cùng nhau
a = \(\frac{n\left(n+1\right)}{2}\); b = 2n + 1
Gọi d = ƯCLN (a; b)
=> a ; b chia hết cho d
a chia hết cho d => 2a chia hết cho d => n(n + 1) chia hết cho d => 2n2 + 2n chia hết cho d
b chia hết cho d => 2n + 1 chia hết cho d => 2n2 + n chia hết cho d
=> (2n2+ 2n) - (2n2 + n) chia hết cho d
=> n chia hết cho d
Mà 2n + 1 chia hết cho d nên (2n +1) - 2n chia hết cho d => 1 chia hết cho d => d = 1
Vậy a ; b nguyên tố cùng nhau
a=n.(n+1):2=n2+n:2
b=2n+1
Gọi d là ƯCLN(n2+n:2 và 2n+1)
Ta có n2+n:2 chia hết cho d =>n2+n:2.2=n2+n chia hết cho d
2n+1 chia hết cho d=> n(2n+1)=2n2+n chia hết cho d
<=> 2n2+n-n2+n chia hết cho d
hay 2 chia hết cho d=> d=1 hoặc 2
do 2n+1 là số lẻ => d khác 2
Vậy d=1
mình cũng ko chắc chắn lắm
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
chứng minh rằng n thuộc N
a) n và n + 1 là 2 số n tố cùng nhau
b) 21n + 4 và 14n + 3 là số n tố
cho n là số nguyên dương. chung minh nếu 2n+1 và 3n+1 là cac số chính phương thì 5n+3 không phải là số nguyen tố
Chứng minh rằng n^3+2n và n^4+3n^2+n là 2 số nguyên tố cùng nhau.
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha
Chứng minh n! +2003 không phải là số chính phương với n thuộc N
n>2 và n ko chia hết cho 3.chứng minh rằng n2-1 và n2+1 ko thể đồng thời là số nguyên tố
cho p và p+4 là các số nguyên tố(p>3).chứng minh p+8 là hợp số
cho p và p+8 là số nguyên tố (p>3).hỏi p+100 là số nguyên tố hay hợp số