tìm a,b biết đa thức f (x)=ax + b có nghiệm x=1 và f (0)=5
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
1. Cho đa thức f (x) thỏa mãn ( x2 - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
2. Đa thức f (x) = ax2 - x + b, a khác 0 và có nghiệm x = 2. Biết rằng tổng của hệ số cao nhất và hệ sô tự do là -7 . Tìm a và b.
1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)
\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)
\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)
\(\rightarrow\left(-1\right).f\left(3\right)=0\)
\(\rightarrow f\left(3\right)=0\)
\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)
\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)
\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0=\left(-1\right).f\left(0\right)\)
\(\rightarrow f\left(0\right)=0\)
\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)
\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)
\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0=1.f\left(2\right)\)
\(\rightarrow f\left(2\right)=0\)
\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{Vậy ...}\)
1, Cho đa thức bậc 2 :ax^2+bx+c trong đó a,b,c:hằng số
a, Biết a+b+c=0.CM f(x) có 1 nghiệm x=1
Áp dụng để tìm nghiêm của đa thức f(x)=8x^2-6x-2
b, Biết a-b+c=0.Cm f(x) có 1 nghiệm:x=-1
Áp dụng để tìm nghiêm của đa thức f(x)=7x^2+11x+4
2, Cho đa thức f(x)=ax^2+bc+c.Tìm a,b,c biết f(0)=2;f(x) có 2 nghiệm là 1 và-1
Bài 6. Xác định a, b biết đa thức f(x)=x + ax+b có a) hai nghiệm là x= -1,x=6 b) f(x)=4khi x=0 và một nghiệm của f(x) là x = 1
1)Cho đa thức:
f(x)=a+b(x-1). Tìm a,b biết x=0 là một nghiệm và f(1)=5
2)Cho đa thức f(x)=a+b(x-1)+x(x-1).Tìm a,b,c biết f(1)=2,f(0)=3 và 2 là một nghiệm của đa thức f(x)
giúp mình vs nha
a, tìm nghiệm của đa thức f(x)=32-12X
b, tìm đa thức f(x)=ax+b biết f(1)=-2 và x=2 là nghiệm của .
c,chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm biết rằng:
(x-2).P(x+5)=(x2-9).P(x+2)
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
Tìm a, b biết đa thức f(x) = ax + b có nghiệm x = 1 và f( 0 ) = 5
Cho f(x) = 2x + 3. Biết \(x_1+x_2\) = 5. Vậy f( x1 ) + f( x2 ) =
Số nghiệm của đa thức f(x) = \(x^4-16\) là
f(x)=ax+b có nghiệm x=1
<=>a.1+b=0<=>a+b=0 (*)
f(0)=5 <=>a.0+b=5<=>b=5
Thay b=5 vào (*)
=>a=-5
bài 2:
Ta có: f(x1)+f(x2)=fx1+fx2=f(x1+x2)
Thay những giả thiết của đề bài vào ta được:
f(x1+x2)=(2x+3).5=10x+15
f(x)=x4-16 có nghiệm
<=>x4-16=0
<=>x4=16=24=(-2)4
=>x=2;x=-2 là 2 nghiệm của đt f(x)
Cho đa thức f(x) = ax^2 + bx + c
chứng tỏ rằng a+b +c =0 thì đa thức f(x) có 1 nghiệm = 1
b áp dụng tìm 1 nghiệm của đa thức f(x) = 5x^2 -6x +1
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1