tìm a,b biết a/2+b/3=a+b/2+3
1. So sánh các số a, b và c, biết rằng a/b = b/c = c/a.
2. Tìm các số a, b, c, d, biết rằng:
a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = -42.
3. Tìm các số a, b, c, biết rằng:
a/2 = b/3 , b/5 = c/4 và a - b + c = -49.
4. Tìm các số a, b, c, biết rằng:
a/2 = b/3 = c/4 và a + 2b - 3c = -20.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2:
a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Với \(\frac{a}{2}=-3\Rightarrow a=-6\)
Với \(\frac{b}{3}=-6\Rightarrow b=-18\)
Với \(\frac{c}{4}=-6\Rightarrow c=-24\)
Với \(\frac{d}{5}=-6\Rightarrow d=-30\)
tìm a,b,c biết
a/b=2/3 , a/c=1/2 và a^3+b^3+c^3=99
\(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{a}{c}=\dfrac{1}{2}\Rightarrow\dfrac{a}{1}=\dfrac{c}{2}\\ \Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)
Áp dụng tcdtsnb:
\(\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{99}{99}=1\\ \Rightarrow\left\{{}\begin{matrix}a^3=8\\b^3=27\\c^3=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Tìm các số tự nhiên a b và A>B biết
1) (a+1).(b+2)=5. 2) ( a+1).(b+3)=6. 3) (a+2). (b+3)=6
\(1,\\ \left(a+1\right)\left(b+2\right)=5\\Vậy:\left(a+1\right);\left(b+2\right)\inƯ\left(5\right)=\left\{1;5\right\}\\ TH1:a+1=1\Rightarrow a=0;b+2=5\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=5\Rightarrow a=4;b+2=1\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ \Rightarrow\left(a;b\right)=\left(4;-1\right)\)
\(2,\\ \left(a+1\right).\left(b+3\right)=6\\ \Rightarrow\left(a+1\right);\left(b+3\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\\ \Rightarrow TH1:a+1=1\Rightarrow a=0;b+3=6\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=2\Rightarrow a=1;b+3=3\Rightarrow b=0\left(Nhận,vì:a>b\right)\\ TH3:a+1=3\Rightarrow a=2;b+3=2\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ TH4:a+1=6\Rightarrow a=5;b+3=1\Rightarrow b=-2\left(Nhận,vì:a>b\right)\\ Vậy:\left(a;b\right)=\left(1;0\right).hoặc\left(a;b\right)=\left(2;-1\right).hoặc\left(a;b\right)=\left(5;-2\right)\)
\(\left(a+1\right)\left(b+2\right)=5\)
\(\Rightarrow\left(a+1\right);\left(b+2\right)\in\left\{1;5\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(0;3\right)\right\}\)
tìm max A=$^{a^3\cdot b-b^3\cdot a}$a^3*b+b^3*a biết a^2+b^2=1
cho a,b,c thuộc n* biết a^3 -b^3-c^3 = 3bc, a^2 = 2(a+b). tìm a,b,c
a, Tìm các số nguyên a,b,c biết rằng: a + b =11, b + c = 3, c + a = 2.
b, Tìm các số nguyên a,b,c,d biết rằng: a + b + c + d = 1 ; a + c + d = 2; a + b + d =3; a + b + c = 4
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
tìm a, b biết
a/2 + b/3 = a+b/2+3
1, Tìm x , biết
a, x+1 / 2 = 32/x+1
b, 12+2x / 24-3x = 2/3
c, -3 / x-2
2, Tìm a,b thuộc N biết :
a, a/b = 3/5 và a3 + b3 = 1216
b, a/b = 49/56 và ƯCLN (a,b) = 12
1)Tìm a, b thuộc N biết a+b=128
ƯCLN=16
2)Tìm a, b thuộc N biết a+b=42,[a, b]=72
3)Tìm a, b thuộc N biết 2.a-3.b=100 và 15.[a, b]+8(a, b) =1550