Chứng minh Rằng 1010-109 -108 chia hết cho 89
Chứng tỏ rằng:
a) 7 8 + 7 9 + 7 10 ⋮ 57
b) 10 10 - 10 9 - 10 8 ⋮ 89
c) 64 10 - 32 11 - 16 13 ⋮ 19
Chứng tỏ rằng:
a, 7 8 + 7 9 + 7 10 ⋮ 57
b, 10 10 - 10 9 - 10 8 ⋮ 89
c, 64 10 - 32 11 - 16 13 ⋮ 19
a, 7 8 + 7 9 + 7 10 = 7 8 . 1 + 7 + 7 2 = 7 8 . 57 ⋮ 57
b, 10 10 - 10 9 - 10 8 = 10 8 . ( 10 2 - 10 - 1 ) = 10 8 . 89 ⋮ 89
c, 64 10 - 32 11 - 16 3 = ( 2 6 ) 10 - ( 2 5 ) 11 - ( 2 4 ) 13 = 2 60 - 2 55 - 2 52 = 2 52 2 8 - 2 3 - 1
= 2 52 . 247 = 2 52 . 13 . 19 ⋮ 19
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
d) Gọi một số tự nhiên bất kỳ là a
\(\Rightarrow\) Số tự nhiên liền kề là a+1
Nếu a là số lẻ thì a+1 là số chẵn
\(\Rightarrow a\left(a+1\right)\) là số chẵn
Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn
Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn
e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )
Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)
Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn
\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )
\(\Rightarrow2a\left(2a+2\right)=8k⋮8\)
Vậy tích hai số chẵn liên tiếp chia hết cho 8
Chứng minh rằng (n+108) x (n+109) chia hết cho 2 với mọi số n
Giải cụ thẻ giùm mình nha !
ta có : n+18 và n+19 là hai số tự nhiên liên tiếp
nên tích của chúng là một số chẵn
mà một số chẵn luôn chia hết cho hai
vậy nó chia hết cho 2
chứng minh rằng: b*1010+c*100+a*1 chia hết cho 4 với a,b,c nằm trong tập hợp N và a+b*2chia hết cho 4chứng minh rằng: b*1010+c*100+a*1 chia hết cho 4 với a,b,c nằm trong tập hợp N và a+b*2chia hết cho 4
ai trả lời nhanh thì tôi k cho nhiều nhất
chứng minh rằng : (37^49 +108) chia hết cho 5
Vậ
Ta có:3749=37.(374)12=37.\(\left(\overline{...1}^{12}\right)\)=37.\(\left(\overline{...1}\right)\)=\(\left(\overline{...7}\right)\)
=>Chữ số tận cùng của 3749 là 7
Mà \(\left(\overline{...7}\right)\)+108=\(\left(\overline{...5}\right)\)\(⋮\)5
Vậy 3749+108\(⋮\)5
Đánh nhầm,bỏ dòng đầu tiên đi nhé
chứng minh rằng (2023^91+2023^90+2023^89) chia hết cho 13
Mình đùa chút nhé:
Cần j chứng minh, thấy nó đúng là đc mà!
mình nghĩ c/m là cái điều đấy nó đã đúng sẵn rồi
nên chắc chẳng cần c/m đâu nhỉ =)
Chứng minh rằng 108 chia hết cho 12 (vì 12=2x6)
Có : 108 = 9x6x2
và 12 = 6 x 2
=> 108 chia hết cho 12
có:108:12=9*2*6
vì:12=2*6
=>108:hết cho 12
Bài 1)Tổng không chia hết cho 10: m^2+370 xn+370^n+2^371
Bài 2)Chứng minh rằng các số sau có chữ số tận cùng giống nhau:
+)7a và 2a (a là số chẵn)
Bài 3)Tìm chữ số tận cùng của hiệu sau 107 x 109 x 111x....x117 - 102 x 104 x 106 x 108
Bài 4)Chứng minh tổng không chia hết cho 10: m^2+105^n+2^105
Bài 5)Chứng minh tổng không chia hết cho 10: m^2+370xn+370^n+2^371
mong các bn giúp minh ai trả lời hết tất cả mink tick 5 Đúng
Chứng minh rằng trong 1010 số tự nhiên bất kì luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 2015
*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....
*Sau đó ta chia 1010 thành 1009 nhóm
*Theo nguyên lý Dirichlet ta có 2 trường hợp
Ta có ĐPCM
Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn
Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9
Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!