Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Taehyng Kim
Xem chi tiết
kevadv
Xem chi tiết
Phan Thanh
Xem chi tiết
hgftvf
Xem chi tiết
Nguyễn Tuấn Khanh
Xem chi tiết
9 Quả Chuổi 9
25 tháng 6 2018 lúc 8:59

A = 1 + \(\frac{1}{2}\left(1+2\right)\)\(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)

A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

A = \(\frac{2+3+4+...+101}{2}\)

A = \(\frac{\left(101+2\right).100}{2}\div2\)

A  = \(5150\div2=2575\)

Nguyen Thi Mai Anh
Xem chi tiết
phan thi van anh
Xem chi tiết
Phương Trình Hai Ẩn
11 tháng 9 2017 lúc 20:06

\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)

\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)

kết quả k bik có sai k

mã thị hằng
Xem chi tiết
๖Fly༉Donutღღ
12 tháng 2 2018 lúc 15:49

1 - 2 - 3 + 4 + 5 - 6 - 7 + 8+ ... + 1993 - 1994

= ( 1 - 2 - 3 + 4 ) = ( 5 - 6 - 7 + 8 ) + ... + 1993 - 1994

= 0 + 0 + ... + 1993 - 1994 

= 0 + ( -1 ) = -1

b) ta có 1^2+2^2+...+n^2 = n(n+1)(2n+1)/6 
=>2^2+4^2+...+(2n)^2= 2^2(1^2+2^2+...+n^2)= 2n(n+1)(2n+1)/3 
và 1^2+2^2+...+(2n+1)^2=(2n+1)(2n+2)(4n+3)/... 
=>1^2+3^2+5^2+...+(2n+1)^2 = (2n+1)(2n+2)(4n+3)/6 - 2n(n+1)(2n+1)/3 = (2n+1)(n+1)(2n+3)/3
=>1^2-2^2+3^2-4^2+..... -(2n)^2+(2n+1)^2 = (2n+1)(n+1)(2n+3)/3 - 2n(n+1)(2n+1)/3 = (n+1)(2n+1) 
do đó ta có khi n = 100 thì 
1^2-2^2+3^2-4^2.....+99^2-100^2+101^2 = (100+1)*(2*100+1)=201*101

Mình cũng không chắc câu b cho lắm

TK97
Xem chi tiết
NgVyPhuong
15 tháng 4 2022 lúc 16:03

\(∘backwin\)

\(a ) ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750\)

\( ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750 \)

\( 100 x + ( 1 + 100 ) ×100 : 2 = 5750\)

\(100 x + 5050 = 5750\)

\( 100 x = 5750 − 5050\)

\(100 x = 700\)

\(x = 700 : 100\)

\(x = 7\)

\(b,\) \(B=\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020}+2021\)

\( B < 1 -\)\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(B<1-\)\(\dfrac{1}{2021}\)

\(B<\)\(\dfrac{2020}{2021}\)

\(\dfrac{2020}{2021}< 1\)

\(B<1\)

Thaoanh Lee
15 tháng 4 2022 lúc 16:03

a) (x+1) +(x+2 ) + ...+(x+100)=5750
= 100x + (1+2+3+...+100) = 5750
=100x + 5050 = 5750
--> 100x = 5750-5050=700
--> x=7

Thaoanh Lee
15 tháng 4 2022 lúc 16:07

b) Ta thấy: 1/2^2 < 1/2.3
                  1/3^2 < 1/3.4
                        ...
                  1/2021^2 < 1/2021.2022
--> B=1/2^2 + 1/3^2 + 1/4^2 + ...+ 1/2021^2 < 1/2.3 + 1/3.4 + ... +1/2021.2022 (1)
     Ta có: 1/2.3 + 1/3.4 + ... +1/2021.2022
         =1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2021 - 1/2022
         =1/2 - 1/2022 < 1 (2)
Từ (1) và (2) --> B<1 (đpcm)
                                                                      <