Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vâng Em Ngốc
Xem chi tiết
Nam Chivas
Xem chi tiết
Nguyễn Lê Hoàng
18 tháng 3 2017 lúc 23:01

Bạn giỏi thật, lớp 8 mà đã đi giải toán lớp 9

Nam Chivas
19 tháng 3 2017 lúc 8:07

ừ mik muốn tìm hiểu 

Nguyễn Tuấn Anh
19 tháng 3 2017 lúc 19:47

ồ bạn giống mk lớp 8 đg ôn thi toán lướp 9 tỉnh nek violympic :D

Nguyễn Ngọc Huyền Anh
Xem chi tiết
Hoang Hung Quan
6 tháng 5 2017 lúc 21:45

Giải:

Gọi \(x\) là số sản phẩm loại I mà xí nghiệp sản xuất được trong \(1\) giờ \(\left(x>0\right)\)

\(\Rightarrow\) Số sản phẩm loại II sản xuất được trong một giờ là \(x+10\)

Thời gian sản xuất \(120\) sản phẩm loại I là \(\dfrac{120}{x}\) (giờ)

Thời gian sản xuất \(120\) sản phẩm loại II là \(\dfrac{120}{x+10}\) (giờ)

Theo bài ra ta có phương trình: \(\dfrac{120}{x}+\dfrac{120}{x+10}=7\left(1\right)\)

Giải phương trình \(\left(1\right)\) ta được: \(\left\{{}\begin{matrix}x_1=30\left(\text{chọn}\right)\\x_2=\dfrac{-40}{7}\left(\text{loại}\right)\end{matrix}\right.\)

Vậy mỗi giờ xí nghiệp sản xuất được \(30\) sản phẩm loại I và \(40\) sản phẩm loại II

Linh Bùi
Xem chi tiết
Linh Bùi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 7:06

Chọn B

Vậy để thu được lợi nhuận cao nhất thì cần sản xuất 20 sản phẩm loại I và 40 sản phẩm loại II

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2018 lúc 3:18

Chọn C

+ Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

+ Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

David Dương
24 tháng 6 lúc 15:59

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 11:22

Gọi số ngày dự định làm theo kế hoạch là x ngày (x > 2)

Số ngày thực tế làm là x – 2 (ngày)

Số sản phẩm sản xuất theo dự định 120.x (sản phẩm), số sản phẩm sản suất theo thực tế 130(x – 2)(sản phẩm)

Theo bài ra ta có phương trình:

120x = 130.(x – 2)

⇔ 120x = 130x – 260

⇔ 10x = 260

⇔ x = 26 (tmđk)

Vậy số sản phẩm xí nghiệp đã sản xuất được là 120.26 = 3120 sản phẩm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 8 2018 lúc 16:17