Mỗi xí nghiệp sản xuất được 120 sản phẩm loại I và 120 sản phẩm loại II trong thời gian 7 giờ. Mỗi giờ sản xuất được số sản phẩm loại I ít hơn só sản phẩm loại II là 10 sản phẩm. Hỏi mỗi giờ xí nghiệp sản xuất được bao nhiêu sản phẩm mỗi loại?
một xí nghiệp sản xuất được 120 sản phẩm loại 1 và 120 sản phẩm loại 2trong 7 giờ .mỗi giờ sản xuất được số sản phẩm loại 1 ít hơn số sản phẩm loại 2 là 10 sản phẩm .hỏi mỗi giờ xí nghiệp sản xuất được bao nhiêu sản phẩm mỗi loại .
Các bạn ơi giúp mik vs mik hok lớp 8 nhưng muốn giải bài toán này
câu hỏi : 1 xí nghiệp sản xuất được 120 sản phẩm loại 1 và 120 sản phẩm loại 2 trong thời gian 7h. Mỗi giờ sản xuất được số sản phẩm loại 1 ít hơn số sản phẩm loại 2 là 10 sản phẩm. Hỏi mỗi giờ xí nghiệp sản xuất được bao nhiêu sản phẩm mỗi loại
Bạn giỏi thật, lớp 8 mà đã đi giải toán lớp 9
ồ bạn giống mk lớp 8 đg ôn thi toán lướp 9 tỉnh nek violympic :D
Một xí nghiệp sản xuất được 120 sản phẩm loại I và 120 sản phẩm loại II trong 7 giờ. Mỗi giờ sản xuất được số sản phẩm loại I ít hơn số sản phẩm loại II là 10 sản phẩm. Hỏi mỗi giờ xí nghiệp sản xuất bao nhiêu sản phẩm mỗi loại.
Giúp mình với, mình đang cần gấp :))
Giải:
Gọi \(x\) là số sản phẩm loại I mà xí nghiệp sản xuất được trong \(1\) giờ \(\left(x>0\right)\)
\(\Rightarrow\) Số sản phẩm loại II sản xuất được trong một giờ là \(x+10\)
Thời gian sản xuất \(120\) sản phẩm loại I là \(\dfrac{120}{x}\) (giờ)
Thời gian sản xuất \(120\) sản phẩm loại II là \(\dfrac{120}{x+10}\) (giờ)
Theo bài ra ta có phương trình: \(\dfrac{120}{x}+\dfrac{120}{x+10}=7\left(1\right)\)
Giải phương trình \(\left(1\right)\) ta được: \(\left\{{}\begin{matrix}x_1=30\left(\text{chọn}\right)\\x_2=\dfrac{-40}{7}\left(\text{loại}\right)\end{matrix}\right.\)
Vậy mỗi giờ xí nghiệp sản xuất được \(30\) sản phẩm loại I và \(40\) sản phẩm loại II
Bài 1: a) Cho Parabol (P) y= x2 và đương thẳng (d) y= 4x +m -2. Tìm m để (d) tiếp xúc với (P). Xác định tọa độ tiếp điểm
b) Một xí nghiệp sản xuất được 100 sản phẩm loại I và 100 sản phẩm loại II trong khoảng thời gian 9 giờ. Mỗi giờ sản xuất được số sản phẩm loại I ít hơn số sản phẩm loại II là 5 sản phẩm. Hỏi mỗi giờ xí nghiệp sản xuất được bao nhiêu sản phẩm mỗi loại.
(mink đag cần gấp)
Bài 1: a) Cho Parabol (P) y= x2 và đương thẳng (d) y= 4x +m -2. Tìm m để (d) tiếp xúc với (P). Xác định tọa độ tiếp điểm
b) Một xí nghiệp sản xuất được 100 sản phẩm loại I và 100 sản phẩm loại II trong khoảng thời gian 9 giờ. Mỗi giờ sản xuất được số sản phẩm loại I ít hơn số sản phẩm loại II là 5 sản phẩm. Hỏi mỗi giờ xí nghiệp sản xuất được bao nhiêu sản phẩm mỗi loại.
(mink đag cần gấp)
Một xưởng sản xuất hai loại sản phẩm. Mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ. Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ. Xưởng có 200 kg nguyên liệu và 1200 giờ làm việc, Biết rằng giá bán 1 kg sản phầm loại I là 40 nghìn và 1 kg sản phẩm loại II là 30 nghìn. Xưởng sản xuất mỗi loại sản phẩm là bao nhiêu để thu được nhiều lợi nhuận nhất
A. 30 kg loại I và 40 kg loại II
B. 20 kg loại I và 40 kg loại II
C. 30 kg loại I và 20 kg loại II
D. 25 kg loại I và 45 kg loại II
Chọn B
Vậy để thu được lợi nhuận cao nhất thì cần sản xuất 20 sản phẩm loại I và 40 sản phẩm loại II
Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2kg nguyên liệu và 30 giờ, đem lại mức lời 40000 đồng. Mỗi kg sản phẩm loại II cần 4kg nguyên liệu và 15giờ, đem lại mức lời 30000 đồng. Xưởng có 200kg nguyên liệu và 120 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?
A. (0 ; 0)
B. (40 ; 0)
C. (20 ; 40)
D. (50 ; 0)
Chọn C
+ Gọi x( x ≥ 0 ) là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.
Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y
Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra
2x+ 4y ≤ 200 hay x+ 2y- 100 ≤ 0 ; 30x+ 15y ≤ 1200 hay 2x+ y-80 ≤ 0
+ Tìm x; y thoả mãn hệ
sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ
Giá trị lớn nhất của L( x; y) đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)
+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;
L(0; 50) = 1.500.000; L(20; 40) = 2.000.000
suy ra giá trị lớn nhất của L(x; y) là 2.000.000 khi (x; y) =(20; 40).
Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.
+ Gọi x( x ≥ 0 ) là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.
Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y
Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra
2x+ 4y ≤ 200 hay x+ 2y- 100 ≤ 0 ; 30x+ 15y ≤ 1200 hay 2x+ y-80 ≤ 0
+ Tìm x; y thoả mãn hệ
sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.
Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ
Giá trị lớn nhất của L( x; y) đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)
+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;
L(0; 50) = 1.500.000; L(20; 40) = 2.000.000
suy ra giá trị lớn nhất của L(x; y) là 2.000.000 khi (x; y) =(20; 40).
Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.
Một xí nghiệp dự định mỗi ngày sản xuất 120 sản phẩm. Trong thực tế mỗi ngày xí nghiệp đã sản xuất được 130 sản phẩm nên đã hoàn thành kế hoạch sớm hơn 2 ngày . Hỏi xí nghiệp đã sản xuất được bao nhiêu sản phẩm ?
Gọi số ngày dự định làm theo kế hoạch là x ngày (x > 2)
Số ngày thực tế làm là x – 2 (ngày)
Số sản phẩm sản xuất theo dự định 120.x (sản phẩm), số sản phẩm sản suất theo thực tế 130(x – 2)(sản phẩm)
Theo bài ra ta có phương trình:
120x = 130.(x – 2)
⇔ 120x = 130x – 260
⇔ 10x = 260
⇔ x = 26 (tmđk)
Vậy số sản phẩm xí nghiệp đã sản xuất được là 120.26 = 3120 sản phẩm.
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phảm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là:
A. 32 triệu đồng
B. 35 triệu đồng
C. 14 triệu đồng
D. 30 triệu đồng