Tìm n:để A nhận giá trị nguyên
\(A=\dfrac{2n^2+4n+5}{n+1}\)
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
cho biểu thức A=(2n+1/n-3)+(3n-5/n-3)-(4n-5/n-3)
Tìm n để A nhận giá trị nguyên
A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
= \(\frac{2n+1+3n-5-4n+5}{n-3}\)
= \(\frac{n+1}{n-3}\)= \(\frac{\left(n-3\right)+4}{n-3}\)= \(1+\frac{4}{n-3}\)
Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta lập bảng giá trị:
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Vậy...
Cho biểu thức A = 2n+1/ n-3 + 3n- 5/n-3 + 4n-5/n-3
Tìm n để A nhận giá trị nguyên
= 2n + 1 + 3n - 5 + 4n - 5 / n - 3
= 2n + 3n + 4n - 5 - 5 + 1 / n - 3
= 2n + 3n + 4n - 9 / n-3
= (2 + 3 + 4)n - 9 / n - 3
= 9n - 9 / n - 3
= 9 (n - 1) / n - 3
Cho biểu thức: A= [(2n+1)/n—3]+[(3n—5)/n—3)]—[(4n—5)/n—3)]
A) Tìm n để A nhận giá trị nguyên
B) Tìm n để A là ps tối giản
cho B=\(\dfrac{2n^2-4n+15}{2(n-1)^2+3} \)
a) tìm số nguyên n để B có giá trị lớn nhất
b)Tìm số nguyên n để B có giá trị là số nguyên
Tìm các giá trị nguyên của n sao cho biểu thức A chia hết cho biểu thức B
1.A=8n^2 -4n +1 , B = 2n+1
2.A=4n^3 -2x^2 -6n +5, B =2n-1
1: \(8n^2-4n+1⋮2n+1\)
\(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
Cho biểu thức A=2n+1/n-3 + 3n-5/n-3 -4n-5/n-3
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
/ là phần
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, Rút gon A
b. Tìm số nguyên n để Á nhận giá trị là số nguyên.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.