Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2021 lúc 9:44

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ax}{cx}=\dfrac{yb}{yd}=\dfrac{ax+yb}{cx+yd}\) (1)

Tương tự: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{za}{zc}=\dfrac{tb}{td}=\dfrac{za+tb}{zc+td}\) (2)

(1);(2) \(\Rightarrow\dfrac{ax+yb}{cx+yd}=\dfrac{za+tb}{zc+td}\Rightarrow\dfrac{xa+yb}{za+tb}=\dfrac{xc+yd}{zc+td}\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:44

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{xa}{xc}=\dfrac{yb}{yd}=\dfrac{za}{zc}=\dfrac{tb}{td}=\dfrac{xa+yb}{xc+yd}=\dfrac{za+tb}{zc+td}\\ \Rightarrow\dfrac{xa+yb}{za+tb}=\dfrac{xc+yd}{zc+td}\)

Iruko
Xem chi tiết
Thắng Nguyễn
8 tháng 6 2016 lúc 21:36

xem đi Đề thi vào THPT Chuyên tỉnh Nam Định năm học 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học

Đinh Thùy Linh
8 tháng 6 2016 lúc 22:58

Cái này đề chuyên PTTH, khó à nghen! Đọc link của bạn Thắng nhưng không thấy có lời giải, mạo muội post bài giải của mình nhờ các bạn góp ý giùm!

\(x^5+8y^3+7z^2=0\)(1)

Gán \(x=N^{6i};y=-N^{10i};z=N^{15i}\mid i\in N^+;N\in N^+\)vào vế trái của (1) ta được.

\(\left(N^{6i}\right)^5+8\left(-N^{10i}\right)^3+7\left(N^{15i}\right)^2=N^{30i}-8N^{30i}+7N^{30i}=0\)

Vậy, \(x=N^{6i};y=-N^{10i};z=N^{15i}\mid i\in N^+;N\in N^+\)x,y,x nguyên khác 0 là 1 họ nghiệm của (1).

Mà có vô số i thuộc N*; N thuộc N* nên có vô số số nguyên x,y,z khác 0 thỏa mãn \(x^5+8y^3+7z^2=0\)(ĐPCM)

Nguyễn Hoàng Liên
Xem chi tiết
Tuấn
7 tháng 6 2016 lúc 21:22

xét ddoomhf dư

nguyễn thị kim oanh
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 11 2019 lúc 8:17

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{xa}{xc}=\frac{yb}{yd}=\frac{xa+yb}{xc+yd}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{za}{zc}=\frac{tb}{td}=\frac{za+tb}{zc+td}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{xa+yb}{xc+yd}=\frac{za+tb}{zc+td}\Rightarrow\frac{xa+yb}{za+tb}=\frac{xc+yd}{zc+td}\left(dpcm\right)\)

Khách vãng lai đã xóa
o lờ mờ
26 tháng 11 2019 lúc 18:04

\(\frac{xa+yb}{za+tb}=\frac{xc+yd}{zc+td}\Rightarrow\frac{xa+yb}{xc+yd}=\frac{za+tb}{zc+td}\)

Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{za}{zc}=\frac{tb}{td}=\frac{za+tb}{zc+td}\left(1\right)\)

Mặt khác:\(\frac{a}{c}=\frac{b}{d}=\frac{xa}{xc}=\frac{yb}{yd}=\frac{xa+yb}{xc+yd}\left(2\right)\)

Từ ( 1 );( 2 ) suy ra đpcm

Khách vãng lai đã xóa
Nguyen Khanh Linh
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết
Thắng Nguyễn
6 tháng 11 2016 lúc 20:04

a)

b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)

\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)

\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)

Dấu = khi \(x=y=z=1\)

GV
8 tháng 11 2016 lúc 9:05

a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)

Lấy \(T_0=a_0\)

      \(T_1=a_0+a_1\)

     \(T_2=a_0+a_1+a_2\)

    \(T_3=a_0+a_1+a_2+a_3\)

    \(T_4=a_0+a_1+a_2+a_3+a_4\)

Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:

TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh

TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.

Lưu Chí Lập
Xem chi tiết
vivaswala
Xem chi tiết
Steolla
27 tháng 8 2017 lúc 8:23

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

alex panda
Xem chi tiết