Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miko hậu đậu
Xem chi tiết
Hoàng Phúc
18 tháng 3 2017 lúc 16:00

pt <=> 30x2-3x2y2-y2=-517<=>3x2(10-y2)-y2+10=-517+10=-507

<=>3x2(10-y2)+(10-y2)=-507<=>(3x2+1)(10-y2)=-507

đến đây giải pt ước số , chú ý 3x2+1>0

TFBOYS
Xem chi tiết
Nguyễn Phi Cường
19 tháng 3 2017 lúc 20:09

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

TFBOYS
20 tháng 3 2017 lúc 11:26

làm đi -_-

Mai Thành Đạt
Xem chi tiết
Hung nguyen
7 tháng 3 2017 lúc 21:15

\(y^2+3x^2y^2=30x^2+517\)

\(\Leftrightarrow\left(1+3x^2\right)\left(y^2-10\right)=507\)

\(\Rightarrow\)(1 + 3x2, y2 - 10) = (1,507;507,1;3,169;169,3;13,39;39,13)

Thế vô rồi giản tiếp nhé

Trần Thiên Kim
7 tháng 3 2017 lúc 21:27

588

Cát Cát Trần
Xem chi tiết
phạm ngọc linh
Xem chi tiết
Pham Van Hung
10 tháng 2 2019 lúc 16:57

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

khoavip51 Dien
Xem chi tiết
Nguyễn Ngọc Anh Minh
27 tháng 12 2023 lúc 7:51

\(3x^2+2y^2=5xy\)

\(\Leftrightarrow3x^2+2y^2-5xy=0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)

\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S

\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)

Game Good
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 2 2022 lúc 23:52

\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)

\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)

\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)

\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)

\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)

Tiếng anh123456
Xem chi tiết
Joe of Maths
23 tháng 10 2023 lúc 23:35

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

Cathy Trang
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 18:25

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)