Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp là một số lẻ
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
gọi 2 số nguyên liên tiếp là a và a+1 .Ta có:
(a+1)2 - a2 =a2+2a+1-a2
=2a+1
vì 2a là số chẵn nên 2a+1 là số lẻ
=> KL
1. Tính tổng của n số lẻ đầu tiên
2. Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp. Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp
chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp
Gọi n; n+1 là hai số tự nhiên liên tiếp
Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)
Nếu n lẻ => 2n chẵn => 2n+1 lẻ
Nếu n chẵn => 2n chẵn => 2n+1 lẻ
=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp
Hãy chứng minh rằng mỗi số lẻ là hiệu của bình phương của hai số tự nhiên liên tiếp
(n+1)2−n2=n2+2n+1−n2=2n+1.Nếu n lẻ => 2n chẵn => 2n+1 lẻNếu n chẵn => 2n chẵn => 2n+1 lẻ=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp Đúng 0
1) Tìm tổng của n số lẻ đầu tiên.
2) Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp.
-Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp.
NHỚ GIẢI RA NHÉ! MIK CẢM ƠN!
Chứng minh mỗi một số lẻ là hiệu của hai số bình phương liên tiếp?
Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8
giúp em nhanh nhé !
Gọi 2 số lẻ liên tiếp là: \(2k-1\)và \(2k+1\)
Xét hiệu: \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)
\(=4k^2+4k+1-\left(4k^2-4k+1\right)\)
\(=8k\) \(⋮\)\(8\)
\(\Rightarrow\)\(A\)\(⋮\)\(8\)
hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8
Chứng minh rằng hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8