Nếu x,y là các số nguyên dương thỏa mãn \(y^2+3x^2y^2=30x^2+517\)
Tính 3x2y2
Nếu x,y là các số nguyên dương thỏa mãn y2+3x2y2= 30x2+517
Giá trị của 3x2y2 là bao nhiêu ....
pt <=> 30x2-3x2y2-y2=-517<=>3x2(10-y2)-y2+10=-517+10=-507
<=>3x2(10-y2)+(10-y2)=-507<=>(3x2+1)(10-y2)=-507
đến đây giải pt ước số , chú ý 3x2+1>0
Nếu x, y là các số nguyên dương thỏa mãn \(y^2+3x^2y^2=30x^2+517\). Giá trị của \(3x^2y^2\) là
(\(3x^2\left(y^2-10\right)+\left(y^2-10\right)=507\)y^2-10)=507
\(\left(y^2-10\right)\left(3x^2+1\right)=507=3.169=3.13.13\)
VP chia hết cho 3 và \(\left\{{}\begin{matrix}3x^2+1\ge1\\\left(3x^2+1\right)=3k+1\end{matrix}\right.\)=>
Loại hệ nghiệm âm, (y^2-10)=3k
\(\left[{}\begin{matrix}y^2-10=3=13\left(loai\right)\\y^2-10=3.13=49\end{matrix}\right.\) \(\left\{{}\begin{matrix}y^2-10=3.13\\3x^2+1=13\end{matrix}\right.\) \(\left\{{}\begin{matrix}y^2=49\\3x^2=12\end{matrix}\right.\)\(\Rightarrow3x^2y^2=12\cdot49=588\)
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
Nếu x,y là các số nguyên dương thỏa:
y2+3x2y2 = 30x2 + 517
Khi đó giá của 3x2y2 là :
Tách ra thu gọn được (3x2+1)(y2-10)=507
giải pt nghiệm nguyên đc y=7,x=2
tìm các số nguyên dương x,y thỏa mãn 3x^2+y^2+4xy=5x+2y+1
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
Dòng 15 từ dưới đếm lên, sửa:
Với \(y< 2\Rightarrow a-2y+4>a+2y-4\) và \(a-2y+4>0\). Lập bảng:
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
tìm các cặp số nguyên dương (x,y) thỏa mãn 3x^2+y^2+4xy+4x+2y+5=0
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
30x2 + 517 = y2 - 3x2y2 x , y là các số nguyên
Tính 3x2y2
help me với nha !