Tính C=\(\dfrac{75.\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+25}{4^{1994}}\)
Tính C=\(\frac{75.\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+25}{4^{1994}}\)
rút gọn biểu thức A=75\(\left(4^{1993}+4^{1992}+...+4^2+5\right)\) +25
Đặt \(B=4^{1993}+4^{1992}+.......+4^2+1\)
\(\Rightarrow4B=4^{1994}+4^{1993}+....+4^3+4\)
\(\Rightarrow3B=4^{1994}-1\)
Mà: \(A=75B+25=25\left(3B+1\right)=25\left(4^{1994}-1+1\right)=25.4^{1994}\)
\(A=75\left(4^{1993}+5^{1992}+...+4^2+5\right)+25=75B+25\)
Xét \(B=4^{1993}+4^{1992}+...+4^2+5=4^{1993}+4^{1992}+...+4^2+4+1\)
\(\Rightarrow4B=4^{1994}+4^{1993}+...+4^2+4\)
\(\Rightarrow4B+1-4^{1994}=4^{1993}+4^{1992}+...+4^2+4+1=B\)
\(\Rightarrow3B=4^{1994}-1\Rightarrow B=\dfrac{4^{1994}-1}{3}\)
Vậy \(A=75.\dfrac{\left(4^{1994}-1\right)}{3}+25=25.4^{1994}-25+25\)
\(\Rightarrow A=25.4^{1994}\)
Rút gọn biểu thức:
\(A=75\left(4^{1993}+4^{1992}+....+4^2+5\right)+25\)
Ta có \(A=75\left(4^{1993}+4^{1992}+....+4+1\right)+25\)
\(\Leftrightarrow A=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)+25\)
Vận dụng hằng đẳng thức
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+...+b^{n-1}\right)\)
Ta có
\(\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)=4^{1994}-1\)
\(\Rightarrow A=25\left(4^{1994}-1\right)+25\)
\(\Leftrightarrow A=25\cdot4^{1994}\)
Vậy \(A=25\cdot4^{1994}\)
Tìm x:
\(\dfrac{x-1}{1992}+\dfrac{x-2}{1993}=\dfrac{x-3}{1994}+\dfrac{x-4}{1995}\)
\(\dfrac{x-1}{1992}+\dfrac{x-2}{1993}=\dfrac{x-3}{1994}+\dfrac{x-4}{1995}\)
\(\Rightarrow\left(\dfrac{x-1}{1992}+1\right)+\left(\dfrac{x-2}{1993}+1\right)=\left(\dfrac{x-3}{1994}+1\right)+\left(\dfrac{x-4}{1995}+1\right)\)
\(\Rightarrow\left(\dfrac{x-1+1992}{1992}\right)+\left(\dfrac{x-2+1993}{1993}\right)=\left(\dfrac{x-3+1994}{1994}\right)+\left(\dfrac{x-4+1995}{1995}\right)\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}=\dfrac{x+1991}{1994}+\dfrac{x+1991}{1995}\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}-\dfrac{x+1991}{1994}-\dfrac{x+1991}{1995}=0\)
\(\Rightarrow\left(x+1991\right)\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)=0\)
\(\Rightarrow\left(x+1991\right)=0\) ( vì \(\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)\ne0\)
\(\Rightarrow x=-1991\)
Tính hợp lí : 1-2-3+4+5-6-7+........+1992+1993-1994 ,giúp mk nhé!
Câu hỏi trong đề thi chọn học sinh giỏi toán lớp 8
Rút gọn biểu thức :
\(A=75.\left(4^{1993}+4^{1992}+...+4^2+5\right)+31\)
\(A=75\left(4^{1993}+4^{1992}+...+4^2+5\right)+31\)
\(=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+31\)
\(=25\left(4^{1994}+4^{1993}+...+4^3+4^2+4-4^{1993}-....-4-1\right)+31\)
\(=25.\left(4^{1994}-1\right)+31\)
\(=25.4^{1994}-25+31\)
\(=25.4^{1994}+6\)
Bài giải
\(A=75\cdot\left(4^{1993}+4^{1992}+...+4^2+4\right)+31\)
Đặt \(B=4^{1993}+4^{1992}+...+4^2+4\)
\(B=4+4^2+...+4^{1992}+4^{1993}\)
\(4B=4^2+4^3+...+4^{1993}+4^{1994}\)
\(4B-B=3B=4^{1994}-4\)
\(B=\frac{4^{1994}-4}{3}\)
Thay \(B=\frac{4^{1994}-4}{3}\) vào biểu thức ta có :
\(A=75\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot3\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot\left(4^{1994}-4\right)+31\)
Cho B= 75(41993+41992+....+4+1) + 25
Chứng tỏ rằng: B chia hết 100
=> B = 75.41993 + 75.41992 + ... + 75.4 + 75 + 25
= 25.3.4.41992 + 25.3.4.41991 + ... + 25.3.4 + 100
= 100.3.41992 + 100.3.41991 + ... + 100.3 + 100
= 100 ( 41992 + 41991 + .... + 3 + 1 ) CHIA HẾT CHO 100
vậy cho mình hỏi Đinh Đức Hùng, số 41993 sẽ sao ạ ?
Mình khai chiển 41993 = 4.41992 rồi như , bạn chưa nhìn ra àk
Rút gọn biểu thức:
A=75(41993+41992+…+42+5)+25
Rút gọn biểu thức:
A=75 .(41993+41992+...+42+5)+25