cho số n thuộc Z biết UCLN(n,6)=1 .Chứng minh n^2-1 chia hết cho 24
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Cho n thuộc z. Chứng minh : (n-2)(n-1)n(n+1) chia hết cho 24.
Ta thấy 24 = 3.8
Mặt khác ƯCLN(3,8)=1 nên ta cần chứng minh tích trên chia hết cho 3 và 8
*Chứng minh chia hết cho 3
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp
Do đó \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3 (1)
*Chứng minh chia hết cho 8
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp nên sẽ có 2 số chẵn và 2 số lẻ
Ta thấy tích 2 số chẵn liên tiếp luôn chia hết cho 8 nên \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 24
chứng minh rằng , với mọi n thuộc Z , (n,6)= 1. thì n^2 - 1 chia hết cho 24
giúp tui với
chứng minh rằng với m,n thuộc z
câu số 1:n mũ 3 +11*n chia hết cho 6
câu số 2: m*n * (m mũ 2-n mũ 2) chia hết cho 6
Bài 1:tìm n thuộc Z để
a. n-4 chia hết cho n-1
b. n+5 chia hết cho n-2
c.2n+1 chia hết cho n-5
d. 3n-a chia hết cho n-2
Bài 2 tìm x, y thuộc Z
a,( x+3)x ( y+2) = 1
b. ( 2x -5)x (y-6)=17
c. ( x-1)x(x+y)=33
Bài 3:cho biết a-b chia hết cho 6
chứng minh
a. a+5bchia hết cho b
b. a+17b chia hết cho 6
c. a-13b chia hết cho 6
Bài 4. chứng minh với a thuộc Z
a. M= a(a+2)-a(a-5)-7 la bội của 7
b. N= (a-2) (a+3)-(a-3)(a+2)là 2 số chẵn
.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3)m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh A thuộc Z thì
a, ( n + 6)^2 - ( n - 6)^2 chia hết cho 24
b, n^3 + 3n^2 - n - 3 chia hết 48 ( với n số lẻ)
giải chi tiết giùm mình nha