Cho B = 2n + 7 / 8n +2 . Tìm n để B tối giản
A) Cho B = 8n +23 / 4n + 5
Tìm n thuộc Z để B là phân sống tối giản
B) cho C = 4n -7 / 2n + 1
Tìm n thuộc Z để C rút gọn được
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Tìm số nguyên n để các phân số sau không tối giản
a, 3n+5/3n+3
b, 2n+3/7n+9
c 5n+6/8n+7
d, 4n+5/5n+4
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
tìm số tự nhiên n để phân số sau tối giản : a) 7/(2n + 1) b) (n + 7)/(n + 2)
Câu a/
Để $\frac{7}{2n+1}$ là phân số tối giản thì $ƯCLN(7,2n+1)=1$
$\Rightarrow 2n+1\neq 7k$ với $k$ là số tự nhiên bất kỳ
$\Rightarrow n\neq \frac{7k-1}{2}$ với $k$ là số tự nhiên bất kỳ.
b.
Gọi $d=ƯCLN(n+7, n+2)$
$\Rightarrow n+7\vdots d; n+2\vdots d$
$\Rightarrow (n+7)-(n+2)\vdots d$
$\Rightarrow 5\vdots d$
$\Rightarrow d=1$ hoặc $d=5$
Để phân số đã cho tối giản thì $d\neq 5$
Điều này xảy ra khi $n+2\not\vdots 5$
$\Leftrightarrow n\neq 5k-2$ với $k$ là số tự nhiên bất kỳ.
tìm n thuộc n để
a)1/1+1 tối giản
b)2n+3/n+7 tối giản
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Tìm n thuộc Z để A =n^3-2n^2+3/n-2
CMR phân số 8n+5/6n+4 tối giản với mọi n thuộc số nguyên
Tìm n ϵ N để các phân số sau tối giản:
a, A= \(\dfrac{2n+7}{5n+2}\) b, B= \(\dfrac{8n+193}{4n+3}\)