Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le diep
Xem chi tiết
Gaming NHD
Xem chi tiết
Thắng Nguyễn
31 tháng 5 2017 lúc 5:53

AM-GM cho cái gt =>x=y=z=1 thay vào

Gaming NHD
1 tháng 6 2017 lúc 0:21

nhầm r bác

hiền nguyễn thị thúy
Xem chi tiết
Nhật Minh
6 tháng 6 2017 lúc 20:32

Đế sai . 1 phải là 2017

Mi Trần
Xem chi tiết
Nguyên
10 tháng 8 2016 lúc 7:56

bài đó nhân liên hợp là ra

GV
27 tháng 9 2017 lúc 14:12

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath

Gold Dragon
Xem chi tiết
Dong tran le
3 tháng 1 2018 lúc 22:27

Ta có:

\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{\left(x-2017\right)\left(y-2017\right)}}\)

\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{xy-2017\left(x+y\right)+2017^2}}\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\)

Suy ra xy=2017(x+y)

Suy ra \(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017\left(x+y\right)-2017\left(x+y\right)+2017^2}}\)

\(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017^2}}\)

\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)

Vậy P=1

Gold Dragon
3 tháng 1 2018 lúc 21:58

Dark Bang SilentNam NguyễnNguyễn Huy Túlê thị hương giangMashiro ShiinaNgô Tấn ĐạtNguyễn Thanh HằngHà Nam Phan Đình

Dong tran le
3 tháng 1 2018 lúc 22:31

Suy ra

\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)

Vậy P=1(vì P>0)

vuongthiquynh
Xem chi tiết
phạm kim liên
Xem chi tiết
Edogawa Conan
16 tháng 8 2021 lúc 16:49

Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)

  \(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)

Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)

                         \(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

Cộng vế với vế ta có:

\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)

\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)

vũ thị ánh dương
Xem chi tiết
Nguyễn Phương Thảo
30 tháng 11 2019 lúc 18:57

ta có : \(x\sqrt{2017-y^2}\le\frac{x^2+2017-y^2}{2}\)

\(y\sqrt{2017-x^2}\le\frac{y^2+2017-x^2}{2}\)

Do đó \(x\sqrt{2017-y^2}+y\sqrt{2017-x^2}\le2017\)

dấu = xảy ra khi và chỉ khi :\(\hept{\begin{cases}x^2=2017-y^2\\y^2=2017-x^2\end{cases}}\)

\(\Leftrightarrow2\left(x^2+y^2\right)=2.2017\)(cộng vế với vế)

\(\Leftrightarrow x^2+y^2=2017\)

Khách vãng lai đã xóa
Đặng Hoài Tâm
Xem chi tiết