nếu là( \(\sqrt{x^2+2017}\)+x)(\(\sqrt{y^2+2017}\)+y)=2017 thì dễ rồi còn nếu là 1 thì chưa nghĩ ra
nếu là( \(\sqrt{x^2+2017}\)+x)(\(\sqrt{y^2+2017}\)+y)=2017 thì dễ rồi còn nếu là 1 thì chưa nghĩ ra
Cho hai số x, y là số thực dương thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức : M = x2y2 ( x2 + y2 )
Cho x,y thuộc R thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
Tính N = x2 + y2 (Áp dụng BĐT cô-si nhak)
Cho hai số x, y là số thực dương thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức : M = x2y2 ( x2 + y2 )
Với x, y là các số dương t/m : \(\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2016\)
Tính gái trị của bt : \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Cho các số thực x,y thỏa mãn điều kiện:
x^3-3xy^2=19
y^3-3x^2y=98
Tính giá trị của biểu thức: M=x^2+y^2
Cho x,y là số dương thỏa mãn : x+y =\(\sqrt{10}\) .Tìm GTNN của P = x2 +y2
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
1) cho \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) . tính M = \(x^2+y^2\)
2) tìm các cặp x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
3) tìm các cặp x,y nguyên thỏa \(x^6+3x^3+1=y^4\)
bài 1 : với giá trị nào của m thì hàm số trên là hàm số bậc nhất
a, \(\frac{m-5}{m+2}.x-4\)
b,\(\sqrt{3-m}.\left(x-2\right)+1\)
bài 2 : các hàm số sau đồng biến hay nghịch biến trên R , vì sao ?
a,\(y=\left(\sqrt{5}-2\right).x-1\)
b, \(y=\sqrt{3x}-2x-9\)
c. \(\frac{y}{3}-\frac{x}{2}=1\)