A = 2002 x 2002
B = 2000 x 2004
So sánh A và B
không quy đồng mẫu số so sánh A=2000/2001+2001/2002
B=2000/2001+2001/2002
Ta có: \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)và\(B=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Mà\(\dfrac{2000}{2001}+\dfrac{2001}{2002}=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Vậy A=B
Ta có: \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
\(B=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)
Do đó: A=B
so sánh A và B mà không cần tính
a) A = 2002 x 2002 và b) B = 2000 x2004
A=2002.2002
A=2002² (1)
B=2000.2004
B=(2002-2).(2002+2)
B=2002²-4 (2)
Từ (1) và (2) suy ra A > B
A = 2002 \(\times\) 2002 = 2000 \(\times\) 2002 + 2002 \(\times\) 2
B = 2000 \(\times\) 2004 = 2000 \(\times\) 2002 + 2000 \(\times\) 2
Vậy A > B
So sánh a và b mà không cần tính toán cụ thể
a) 2002 x 2002
b) 2000 x 2004
A=2002x2002 và B=2000x2004
A=2002x(2000+2)
A=2002x2000+2002x2
B=2000x(2002+2)
B=2000x2002+2000x2
Vì 2002x2000 = 2000x2002
2002x2 > 2000x2
Vậy A > B
2000.2004=(2002-2)(2002+2)=20022+2.2002-2.2002-4=20022-4<20022.
Vậy a>b
So sánh a và b mà không tính cụ thể giá trị của chúng :
a = 2002 x 2002 ; b = 2000 x 2004
Bài này ta so sánh qua trung gian .
Được a > b
Đ/s : a > b
Ta có a=2002x2002=(2000+2)x2002=2000x2002+2x2002=2000x2002+4004
b=2000x2004=2000x(2002+2)=2000x2002+2000x2=2000x2002+4000
a=2000x20002+4004 >b=2000x2002+4000 (vì 2000x2002=2002x2000 và 4004>4000)
Vậy a>b
\(a=2002\cdot2002=2002^2\)
\(b=2000\cdot2004=\left(2002-2\right)\cdot\left(2002+2\right)=2002^2-2^2\)
Vì 20022>20022-4 Nên \(a>b\)
So sánh a và b mà không tính cụ thể giá trị của chúng :
a = 2002 x 2002
b = 2000 x 2004
ta có a = ( 2000 + 2 ) x 2002
a = 2002 x 2002 + 2 x 2002
b = 2000 x ( 2002 + 2 )
b = 2000 x 2002 + 2 x 2000
Ta có vì : 2000 x 2002 = 2000 x 2002
vậy ta so sánh : 2 x 2002 và 2 x 2000
Vì 2 x 2002 > 2 x 2000
=> a > b
a = ( 2000 + 2 )²
b = 2000 x ( 2000 + 4 )
=> a > b
Vì a = ( 2000 + 2 )² = 4008004
b = 2000 x ( 2000 + 4 ) = 4008000
Đơn giản là thế này:
Ta có a...b
⇔2002.2002...2000.2004
⇔2002²...(2002-2)(2002+2)
⇔2002²....2002²-4
⇔2002²>2002²-4
⇔a>b
A = 2002 x 2002
B = 2000 x 2004
So sánh A và B mà không cần tính giá trị cụ thể của chúng .
A = 2002 x 2002
B = 2000 x 2004
So sánh A và B mà không cần tính giá trị cụ thể của chúng .
A=2002x2002 và B=2000x2004
A=2002x(2000+2)
A=2002x2000+2002x2
B=2000x(2002+2)
B=2000x2002+2000x2
Vì 2002x2000 = 2000x2002
2002x2 > 2000x2
Vậy A > B
tick đúng nhé
So sánh A và B, biết: A= 2000/2001 + 2001/ 2002 và B= 2000 + 2001/ 2001 + 2002
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
Cho A=2000/2001+2001/2002 và B=2000+2001/2001+2002
So sánh A và B
B=2000+1+2002=4003
A=2000/2001+2001/2002
=2002.(2000+2001)/2001.2002
=2000+2001/2001<1
Mà B>1 suy ra A<B