Tìm x, y biết:
10x = 6y và 2x2 - y2 = -28
a)cho 10x=6y và 2x^2-y2=-28 tìm x,y
b)cho x/2=y/5 và x^2-y^2=4 tìm x,y
a)\(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\Rightarrow\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=\frac{-28}{-28}=1\)
\(\Rightarrow\hept{\begin{cases}x^2=1.36=36\\y^2=1.100=100\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(-6;-10\right)\\\left(x;y\right)=\left(6;10\right)\end{cases}}\)
b)\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2-y^2}{4-25}=\frac{4}{-21}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{4}{-21}.4=-21\\y^2=\frac{4}{-21}.25=\frac{100}{-21}\end{cases}}\)
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}}\) nên ko có số x;y thỏa mãn
Có thể bạn chép sai đề phần b rồi
Tìm x,y biết 10x=6y và 2x^2-y^2=-28
10x = 6y => x = 3y/5
thay vao ta co :
2(3y/5)^2 - y^2 = -28
<=> 18y^2/25 - y^2 = -28
<=> 7y^2 = 700
<=> y = 10
=> x = 6
\(10x=6y\) => \(x=\frac{6y}{10}=\frac{3y}{5}\)
=> \(2x^2-y^2=2\times\left(\frac{3y}{5}\right)^2-y^2=-28\)
<=> \(2\times\frac{9y^2}{25}-y^2=-28\)
<=> \(\frac{18y^2}{25}-y^2=-28\)
<=> \(\frac{-7y^2}{25}=-28\)
<=> \(-7y^2=-700\)
<=> \(y^2=100\)
<=> \(y=10;x=6\) hoặc \(y=-10;x=-6\)
\(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\Rightarrow\frac{x^2}{36}=\frac{y^2}{100}\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=-\frac{28}{-28}=1\)
\(\Rightarrow2x^2=72\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
\(\Rightarrow y^2=100\Rightarrow y=\pm10\)
tìm x,y biết rằng : 10x=6y và 2x^2 -y^2 =-28
10x=6y=>x/6=y/10=>2x^2/72=y^2/100
áp dụng tính chất dãy tỉ số bang nhau ta có
\(^{2x^2}_{72}\)=\(^{y^2}_{100}\)=2x^2-y^2/72-100=-28/-28=1
=>x=6,y=10
10x=6y suy ra y/10 = x/6 suy ra y^2/100= x^2/36 suy ra y^2/100=2.x^2/72
2x^2-y^2= -28 nên y^2 -2x^2=28
y^2/100= 2x^2/72 =( y^2 - 2x^2)/(100-72)= 28/28 =1
ý^2/100=1 suy ra y^2=100 suy ra ý=10 hoặc ý=-10
2x^2/72=1 suy ra 2x^2=72 suy ra x^2= 36 suy ra x=6 hoặc x= -6
Bài 8*: Tìm giá trị nhỏ nhất của biểu thức a) P= x2 + 10x + 27
b) Q=2x2 - 6x
c) M= x2 + y2 - x + 6y + 10
a: ta có: \(P=x^2+10x+27\)
\(=x^2+10x+25+2\)
\(=\left(x+5\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-5
Tìm x và y biết
10x = 6y và 2x2 - y2 =-28
Ta có: \(10x=6y\) \(\Leftrightarrow x=\frac{6y}{10}=\frac{3y}{5}\)
\(\Rightarrow2x^2-y^2=2\times\left(\frac{3y}{5}\right)^2-y^2=-28\)
\(\Leftrightarrow2\times\frac{9y^2}{25}-y^2=\frac{18y^2}{25}-y^2=-28\)
\(\Leftrightarrow\frac{-7y^2}{25}=-28\Leftrightarrow-7y^2=-700\Leftrightarrow y^2=100\)
\(\Leftrightarrow x=10\) và \(y=6\) hoặc \(x=-10\) và \(y=-6\)
Tìm x; y biết 10x=6y và \(2x\)\(=-28\)
tìm x,y
10x=6y và 2x2-y2=28
Phân tích các đa thức sau thành nhân tử :
a/ 10x(x−y)−6y(y−x)10x(x−y)−6y(y−x)
b/ 14x2y−21xy2+28x3y214x2y−21xy2+28x2y2
c/ x2−4+(x−2)2x2−4+(x−2)2
d/ (x+1)2−25(x+1)2−25
d: \(=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
Cho x,y là các số thực thoả mãn điều kiện 3x2 y2 10x 6y 2xy 14. Tìm GTLN của x y