Cho tam giác ABC vuông tại A gọi M là trung điểm của BC.CMR AM=1/2BC
Cho tam giác ABC,gọi M là trung điểm của BC.Chứng minh rằng nếu AM=1/2BC thì tam giác ABC vuông tại A
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
Trên tia đối của tia MA, lấy điểm D sao cho MA=MD
Xét tứ giác ACDB có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AD
Do đó: ACDB là hình bình hành
Hình bình hành ACDB có \(\widehat{CAB}=90^0\)
nên ACDB là hình chữ nhật
Suy ra: BC=AD
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)
Bài 3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=1/2BC
áp dụng tính chất đường trung tuyến của tam giác vuông
=> AN=1/2BC
Cho tam giác ABC có AB=BC. Gọi M là trung điểm của BC.CMR:
a) tam giác ABM=tam giác ACM
b) góc AMB = góc AMC
c) AM vuông góc BC tại M
Cho tam giác ABC vuông tại A, AM là trung tuyến. kẻ MH vuông góc với AC tại H.Trên tia đối tiaMH lấy điểm K sao cho MH=MK.
a. Gọi G là giao điểm của BH và AM. CM G là trọng tâm của tam giác ABC
c. CM: AM=1/2BC
Làm hộ mình nha, cần gấp!
A) XÉT \(\Delta ABC\)VUÔNG TẠI
CÓ AM LÀ TRUNG TUYẾN \(\Rightarrow AM=\frac{1}{2}BC\Leftrightarrow AM=BM=CM\)
XÉT TAM GIÁC AMC CÓ AM=CM => TAM GIÁC AMC CÂN TẠI M
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ TIA PHÂN GIÁC => MH LÀ PHÂN GIÁC CỦA \(\widehat{AMC}\)
\(\Rightarrow\widehat{AMH}=\widehat{HMC}\)
XÉT \(\Delta AMH\)VÀ \(\Delta CMH\)CÓ
\(AM=MC\left(CMT\right)\)
\(\widehat{AMH}=\widehat{HMC}\left(CMT\right)\)
MH LÀ CẠNH CHUNG
=>\(\Delta AMH\)=\(\Delta CMH\)(C-G-C)
=> AH= CH ( HAI CẠNH TƯƠNG ỨNG)
=> BH LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC ABC
VÌ HAI TĐƯỜNG TRUNG TUYẾN AM VÀ BH CẮT NHAU TẠI G
=> G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
CÓ AM LÀ TRUNG TUYẾN
\(\Rightarrow AM=\frac{1}{2}BC\left(Đ/L\right)\)P/S CHỈ ÁP DỤNG TRAM GIÁC GIÁC VUÔNG
c) Tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, bạn lên mạng tham khảo , EZ
a) AM = MC nên tam giác AMC cân tại M nên MH là đường cao cũng là trung tuyến hay H là trung điểm của AC nên BH là trung tuyến của tam giác ABC
Mà AM cũng là trung tuyến của tam giác ABC nên G trọng tâm của tam giác ABC
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
Cho tam giác ABC vuông tại A, M là trung điểm của BC và MB=MC.Chứng minh AM=1/2BC
kẻ tia đối AM' của AM sao cho AM=AM'
Cho tam giác ABC có AB=AC. gỌI M là trung điểm của BC.CMR
AM vuông góc BC
Tam giác ABM và tam giác ACM có :
AB=AC( GT)
BM=BC(M là trung điểm của BC)
chung cạnh AM
Do đó , tam giác ABM = tam giác ACM
=> AMB=AMC( hai góc tương ứng)
Ta có : AMB+AMC=180\(^0\)
mà AMB=AMC=> AMB=90\(^0\)và \(AMC=90^0\)
Vậy AM vuông hóc với BC
Cmr: Nếu tam giác ABC có M là trung điểm của BC và AM =1/2BC thì tam giác ABC vuông tại A
\(AM=\frac{1}{2}BC\)
\(\Rightarrow\)\(AM=MB=MC\)
\(\Delta MBA\)cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAB}=\widehat{B}\) (1)
\(\Delta MAC\) cân tại \(M\)
\(\Rightarrow\)\(\widehat{MAC}=\widehat{C}\) (2)
Lấy (1) + (2) theo vế ta được:
\(\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)
\(\Leftrightarrow\)\(\widehat{BAC}=\widehat{B}+\widehat{C}\)
\(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\)\(\widehat{BAC}=90^0\)
Vậy \(\Delta ABC\)\(\perp\)\(A\)
AM=12 BC
⇒AM=MB=MC
ΔMBAcân tại M
⇒^MAB=^B (1)
ΔMAC cân tại M
⇒^MAC=^C (2)
Lấy (1) + (2) theo vế ta được:
^MAB+^MAC=^B+^C
⇔^BAC=^B+^C
ΔABC có: ^BAC+^B+^C=1800
⇒^BAC=900
Vậy ΔABC⊥A