Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huỳnh thị ngọc ngân
Xem chi tiết
TRẦN NGỌC PHƯƠNG NGHI_7A...
Xem chi tiết
bae_ỉn yang hồ
4 tháng 11 2021 lúc 22:02

lỗi r bn ơi

Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:04

Bạn ghi lại đề đi bạn

Nguyễn Võ Văn
Xem chi tiết
Nguyễn Trọng Long
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 10 2015 lúc 21:30

câu 1:0

Câu 2: -4

Nguyễn Lê Nguyệt Minh
6 tháng 10 lúc 16:04

Mik nghĩ là............

câu 1 ~ 2011

câu 2 ~ -4

Sai thì cho mik xin lũi nhó

Vương Quốc Anh
Xem chi tiết
chuche
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:39

\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

 

anh pro
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:05

Câu 5:

\(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3=\left(1-b\right)^3+b^3=1-3b+3b^2-b^3+b^3\)

\(=1-3b+3b^2=3\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(minM=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)

Lấp La Lấp Lánh
4 tháng 11 2021 lúc 13:21

Câu 7:

\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng do a,b dương)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

hoàng bảo nam
Xem chi tiết
hoàng bảo nam
8 tháng 4 2022 lúc 13:12

giúp mình vs

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:50

5.

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow2a^2+2b^2\ge a^2+b^2+2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)

\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=a^2+b^2-ab\)

\(M=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\ge\dfrac{3}{2}.\dfrac{1}{2}-\dfrac{1}{2}=\dfrac{1}{4}\)

\(M_{min}=\dfrac{1}{4}\) khi \(a=b=\dfrac{1}{2}\)

6.

Do \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2>0\)

Mà \(a^2-ab+b^2>0\Rightarrow a+b>0\)

Mặt khác với mọi a;b ta có:

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow ab\le\dfrac{1}{4}\left(a+b\right)^2\) \(\Rightarrow-ab\ge-\dfrac{1}{4}\left(a+b\right)^2\)

Từ đó:

\(2=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-3.\dfrac{1}{4}\left(a+b\right)^2\left(a+b\right)=\dfrac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)

\(N_{max}=2\) khi \(a=b=1\)

Nguyễn Việt Lâm
8 tháng 4 2022 lúc 13:52

7.

Ta có:

\(a^3+b^3+abc=\left(a+b\right)\left(a^2+b^2-ab\right)+abc\ge\left(a+b\right)\left(2ab-ab\right)+abc\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b\)

8.

\(\left|a+b\right|>\left|a-b\right|\Leftrightarrow\left(a+b\right)^2>\left(a-b\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2>a^2-2ab+b^2\)

\(\Leftrightarrow4ab>0\Leftrightarrow ab>0\)

\(\Rightarrow a;b\) cùng dấu

moew nguyễn
Xem chi tiết
NGUYỄN♥️LINH.._.
20 tháng 3 2022 lúc 21:09

lỗi h/ảnh

Hoàng Lan Hương
Xem chi tiết