cho hình bình hành ABCD có M,N là trung điểm của AB và CD , AN và CM căt sBD ở E và F . Chứng minh :
a) AM=CN và tứ giác AMCN là hình bình hành
b) F là trung điểm của BE và E là trùn điểm của DF
cho hình bình hành ABCD có m,n là trung điểm của AB và CD, AN và CM cắt BD ở EF. CM
a)AM=CN và tứ giác AMCN là hình bình hành
b)F là trung điểm của BE
c)DE=EF=FB
a, AB=CD(các cạnh đối bằng nhau theo từng đôi)
Mà M,N lần lượt là trung điểm AB, CD=> AM=BM=CN=DN
=>AM=CN
Vì AM=CN và AM//CN(AB//CD)=> AMCN là hình bình hành.
b, AMCN là hình bình hành=>AN//MC=>AE//MF
Tam giác ABE có: AE//MF và MA=MB=> EF=FB(tính chất đường trung bình) (1) => F là trung điểm BE.
c, AN//MC=>EN//FC
Tam giác DFC có: EN//FC và ND=NC=> DE=EF(tính chất đường trung bình) (2)
Từ (1) và (2)=>DE=EF=FB.
Dành cho những học siinh không làm được bài mò vào xem nè! Còn đúng hay sai mình không đảm bảo nha!!!
Cho hình bình hành ABCD , O là giao điểm của 2 đường chéo , M và N là trung điểm của OD và OB
E là giao điểm của AM và CD ,
F là giao điểm của CN và AB
a) Chứng minh a tứ giác AMCN là hình bình hành
b) Chứng minh b AECF là hình bình hành
a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)
=> O là trung điểm AC và BD.
=> OD=OB
Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.
Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)
=> đpcm (điều phải chứng minh)
b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))
=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M,N theo thứ tự là trung điểm của OB và OD. Gọi E là giao điểm của AM và CD, F là giao điểm của CN và AB
a) Chứng minh tứ giác AMCN là hình bình hành
b) Tứ giác AECF là hình gì? Vì sao?
c) Chứng minh E và F đối xứng nhau qua O
d) Chứng minh EC = 2DE
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
Bài 1 Cho hình bình hành ABCD; O là giao điểm 2 đường chéo Gọi M,N lần lượt là trung điểm của OD và OB; AM cắt CD tại E CN cắt AB tại F
a) CM tứ giác AMCN, AECF là hình bình hành
b) E và F có đối xứng qua O không tại sao?
c) Chứng minh DE=1/2 EC
Cho hình bình hành ABCD có M,N là trung điểm của AB và CD,AN và CM cắt BD ở E và F.
a)Chứng minh AMCN là hình bình hành
b)Chứng minh AC;MN;EF đồng quy
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. M,N là trung điểm của OD và OB. E là giao đeliểm của AM và CD. F là giao điểm của CN và AB
CMR: a, Tứ giác AMCN là hình bình hành
b, Tứ giác AECF là hình bình hành
c, DE bằng một phần hai EC
Cho hình bình hành ABCD, M và N là trung điểm của AB và CD.
a/ Chứng minh: AMCN là hình bình hành.
b/ BD cắt AN ở E, cắt CM ở F. Chứng minh: DE = EF = FB.
Cho hình bình hành ABCD , hai đường chéo cắt nhau taij O.Lấy M,N lần lượt là trung điểm của OD , OB,E là giao điểm của AM và CD,F là giao điểm của CN và AB. a.chứng minh AMCN là hình bình hành b. Chứng minh DE=BF
a:
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
OM=OD/2
ON=OB/2
mà OD=OB
nên OM=ON
=>O là trung điểm của MN
Xét tứ giác AMCN có
O là trung điểm chung của AC và MN
=>AMCN là hbh
b: Xét tứ giác AFCE có
AF//CE
AE//CF
=>AFCE là hbh
=>AF=CE
AF+FB=AB
CE+ED=CD
mà AF=CE và AB=CD
nên FB=ED
cho hình bình hành ABCD (với AB>CD) Gọi M và N theo thứ tự là trung điểm của AB và CD A) Chứng minh AN=CM B) Chứng minh tứ giác AMCN là hình bình hành C) Chứng minh AM//CM