Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị kim oanh
Xem chi tiết
alibaba nguyễn
11 tháng 3 2019 lúc 14:32

Sửa đề:

\(Q=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100-1+\frac{100}{2}-1+...+\frac{100}{99}-1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}=\frac{1}{100}\)

MAI THANH BÌNH
11 tháng 3 2019 lúc 19:35

haha!dungs rois!

Nguyễn Ngọc Ánh
11 tháng 3 2019 lúc 20:49

sai đề bài kìa

Đinh Đức Hùng
Xem chi tiết
Phúc Crazy
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

1+1=3 :)))

Tran Phu Dung
Xem chi tiết
Lương Nguyễn Anh Đức
Xem chi tiết
Nguyễn Thị Thùy Dương
22 tháng 11 2015 lúc 12:19

\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)

    \(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)

Hoàng Tuấn Phi
Xem chi tiết
Song ngư công chúa
Xem chi tiết
Thanh Tùng DZ
14 tháng 7 2017 lúc 21:02

\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(F=\left(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-2.\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)

\(F=\frac{1}{2^{51}}+\frac{1}{2^{52}}+...+\frac{1}{2^{100}}\)

Thanh Tùng DZ
14 tháng 7 2017 lúc 20:58

\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(E=1-\frac{1}{2^{100}}\)

Song ngư công chúa
14 tháng 7 2017 lúc 21:03

Bài nào là đúng vậy bạn

Nguyễn Thị Hải Yến
Xem chi tiết
Nguyễn Linh Chi
11 tháng 3 2019 lúc 10:58

Tách 100 thành 100 số 1

Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS

=> Phân số trên=1

phan thi van anh
Xem chi tiết
vuong hien duc
Xem chi tiết