3-m:81=27
m : 3 + m : 9 + m : 27 + m : 81 = 5/9
\(m:3+m:9+m:27+m:81=\frac{5}{9}\)
\(m:\left(3+9+27+81\right)=\frac{5}{9}\)
\(m:120=\frac{5}{9}\)
\(m=\frac{5}{9}\times120\)
\(m=\frac{200}{3}\)
\(m.\frac{1}{3}+m.\frac{1}{9}+m.\frac{1}{27}+m.\frac{1}{81}=\frac{5}{9}\)
\(m\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)=\frac{5}{9}\)
Vì: \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}=\frac{27}{81}+\frac{9}{81}+\frac{3}{81}+\frac{1}{81}=\frac{40}{81}\)
nên \(m.\frac{40}{81}=\frac{5}{9}\)
\(m=\frac{5}{9}:\frac{40}{81}=\frac{5}{9}.\frac{81}{40}=\frac{9}{8}\)
Find m: \(\frac{3^{-m}}{81}=27\)
\(\frac{3^{-m}}{81}=27\)
\(=>3^{-m}=27\cdot81\)
\(3^{-m}=2187\)
Vì nếu \(k^{-m}\) thì => k = \(\frac{1}{k^m}\)
mà 2187 \(\in N\)
=> Không tìm được m thỏa mãn yêu cầu đề bài.
\(\frac{3^{-m}}{81}=27\Rightarrow3^{-m}=27.81=2187=3^7\)
\(\Rightarrow-m=7\)
\(\Rightarrow m=-7\)
M= 1/3+1/9+1/27+1/81+............+1/6561
M = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
=> 3M = \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)
=> 3M - M = ( \(1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\) ) - ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\))
2M = 1 - \(\frac{1}{6561}\)
2M = \(\frac{6560}{6561}\)
=> M = \(\frac{3280}{6561}\)
\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+.......+\frac{1}{6561}\)
\(\Rightarrow M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\)
\(\Rightarrow3M=3\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.........+\frac{1}{3^8}\right)\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^7}\)
\(\Rightarrow3M-M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..........+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-.......-\frac{1}{3^8}\)
\(\Rightarrow2M=1-\frac{1}{3^8}\)
\(\Rightarrow M=\frac{1-\frac{1}{3^8}}{2}\)
Vậy M = \(\frac{1-\frac{1}{3^8}}{2}\)
\(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow3M=3\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\right)\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{6561}\right)\)
\(\Rightarrow2M=1-\frac{1}{6561}\)
\(\Rightarrow2M=\frac{6560}{6561}\)
\(\Rightarrow M=\frac{3280}{6561}\)
Tính \(\frac{3^{-m}}{81}\)=27
\(\frac{3^{-m}}{81}=27\)
\(\frac{3^{-m}}{3^4}=3^3\)
\(3^{-m}=3^3\times3^4\)
\(3^{-m}=3^7\)
\(-m=7\)
\(m=7\)
3-m = 37
1/3m = 37
3m +7 = 1 = 3o
m= -7
tài năng toán học đặng yến linh
hãy tính: M=1/3+1/9+1/27+1/81+.....+1/6561
3M=1+1/3+1/9+...+1/2187
2M=3M-M
2M=1-1/6561
2M=6560/6561
M=3280/6561
find m such that\(\frac{3^{-m}}{81}\)=27. Answer: m=... .Giúp mình với.
Tìm x :
27 mũ x phần 3 mũ x = 81
\(\frac{27^x}{3^x}=81\)
\(\Rightarrow\frac{\left(3^3\right)^x}{3^x}=81\)
\(\Rightarrow\frac{3^{3x}}{3^x}=81\)
\(\Rightarrow3^{3x-x}=81\)
\(\Rightarrow3^{2x}=81\)
\(\Rightarrow3^{2x}=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
Rút gọn phân số: M = 9^4 . 27^5 . 3^6 . 3^4/3^8 . 81^4 . 234 . 8^2
So sánh
81. 27. 32 và 813 : 272
Ta có :
81.27.32 = 34.33.32 = 39
813 : 272 = (34)3 : (33)2 = 312 : 36 = 36
Mà 39 > 36 ⇒ 81. 27. 32 > 813 : 272