Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thùy Dung
Xem chi tiết
Phạm Thùy Dung
4 tháng 12 2019 lúc 16:45

Nhanh lên

Khách vãng lai đã xóa
Mất nick đau lòng con qu...
4 tháng 12 2019 lúc 16:48

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)

Khách vãng lai đã xóa
nguyen yen nhi
Xem chi tiết
T.Ps
28 tháng 7 2019 lúc 17:30

#)Giải :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\Rightarrow c+c=0\Rightarrow c=0\left(đpcm\right)\)

Rose
28 tháng 7 2019 lúc 17:36

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=1\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)(đpcm)

Gukmin
12 tháng 6 2020 lúc 22:12

Ta có:\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}\)\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)(T/c dãy TSBN)

\(\Rightarrow a+b+c=a+b-c\)

\(\Leftrightarrow c=-c\)

\(\Leftrightarrow2c=0\)

\(\Rightarrow c=0\left(đpcm\right)\)

Vậy...

Matcha

Khách vãng lai đã xóa
Nguyễn Nhật Hạ
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
The Last Legend
Xem chi tiết

A/B=C/D <=>A/C=B/D

THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ

A/C=B/D=A+B/C+D=A-B/C-D

=>A+B/C+D=A-B/C-D

=>A+B/A-B=C+D/C-D =>ĐPCM

The Last Legend
15 tháng 6 2018 lúc 10:14

giải cả ra nhé

Dương
15 tháng 6 2018 lúc 10:22

bạn tham khảo :

Câu hỏi của Kudo Shinichi - Toán lớp 7 - Học toán với OnlineMath

nguyễn hoàng lê thi
Xem chi tiết
Trần Hải An
26 tháng 7 2016 lúc 14:37

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\left(a+b\right).\left(c-d\right)=\left(a-b\right).\left(c+d\right)\)

Chia hai vế cho \(\left(a-b\right).\left(c-d\right)\)

\(\Rightarrow\frac{\left(a+b\right).\left(c-d\right)}{\left(a-b\right).\left(c-d\right)}=\frac{\left(a-b\right).\left(c+d\right)}{\left(a-b\right).\left(c-d\right)}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Lê Nguyên Hạo
26 tháng 7 2016 lúc 14:34

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow ac-ad+ba-bd=ab-bc+ad-db\) (luôn đúng)

Lê Nguyên Hạo
26 tháng 7 2016 lúc 14:42

Làm thiếu cho sửa lại

nguyên quang huy
Xem chi tiết
Xyz OLM
22 tháng 6 2021 lúc 16:47

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)

=> a + b + c = a + b - c

=> c = -c

=> 2c = 0

=> c = 0( đpcm) 

Khách vãng lai đã xóa
Phan Thị Thu Ngân
Xem chi tiết
Hoàng Xuân Ngân
4 tháng 10 2015 lúc 16:58

Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Trần Hữu Định
Xem chi tiết