cho M = x.(x-4) với giá trị nào của x thì :
a/ M = 0
b/ M > 0
c/ M < 0
cho M = x. ( x - 3 ) với giá trị nào của x thì : a) M = 0 , b) M < 0
a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy khi x = 0 hoặc x = 3 thì M = 0
b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Vậy \(0< x< 3\) thì M < 0
ta có M = x.(x-3)
= \(x^2-3x\)
nếu M = 0 thì \(x^2-3x=0\)
= \(x\left(x-3\right)=0\)
= \(\orbr{\begin{cases}x=0\\x-3=0=>x=3\end{cases}}\)
nếu M < 0 thì \(x^2-3x< 0\)
= \(x\left(x-3\right)< 0\)
= \(\orbr{\begin{cases}x< 0\\x-3< 0=>x< 3\end{cases}}\)
Với giá trị nào của m thì mỗi PT sau có nghiệm kép ? Tìm nghiệm kép đó?
a) mx2 + 2(m + 2) x + 9 = 0 b) x2 – 2(m - 4) x+( m2 + m + 3 ) = 0
c)( m + 1) x2 – m3x + m2 ( m – 1) = 0 d) (m + 3) x2 – mx +m = 0
a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)
\(\Leftrightarrow4m^2+16m+16-36m=0\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)
hay \(m\in\left\{1;4\right\}\)
b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)
\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)
=>-36m+52=0
=>-36m=-52
hay m=13/9
d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)
\(\Leftrightarrow m\left(m-4m-12\right)=0\)
=>m(-3m-12)=0
=>m=0 hoặc m=-4
a) PT có nghiệm kép khi △=0
\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)
\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)
\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)
+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)
+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)
Cho M=x(x-3).Với giá trih nào của x thì
a)M>0
b)M<0
c)M=0
Với giá trị nào của m thì hai đường thẳng (d1 ) : x−my = 0,(d2 ) :mx− y =m+1 trùng nhau ?
A. m = 0. B. m khác 1. C. m = 0 hoặc m = −1. D. m = −1.
Lời giải:
Để hai đường thẳng trùng nhau thì trước tiên ta có: \(\frac{1}{m}=\frac{-m}{-1}=m(m\neq 0)\Leftrightarrow m=\pm 1\)
Nếu $m=1$ thì $(d_1): x-y=0$ và $(d_2): x-y=2$ không trùng nhau được
Nếu $m=-1$ thì $(d_1): x+y=0$ và $(d_2): x+y=0$ trùng nhau
Đáp án D.
Với giá trị nào của m thì mỗi phương trình sau là phương trình bậc nhất một ẩn x: a) (m-1)x+2=0 b)x+m-3=0 c)(x-2)m+3=0
Cho biết M=x-1/3-x cới giá trị nào của x thì M có giá trị dương b) giá trị âm c) M=0
1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0
a) Giải phương trình với m = -2
b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1
c) Tìm các giá trị của m để phương trình trên có nghiệm kép
2.Xác định m để mỗi cặp phương trình sau có nghiệm chung
a) x2 + mx +2 = 0 và x2 +2x + m = 0
b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0
3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0
a) Giải phương trình với m = - 2
b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2
4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0
a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất
b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất
c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất
Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Cho hệ PT \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\) (m là tham số)
a, giải và biện luận hệ pt theo m
b, xác định giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) sao cho x>0,y>0
c, với giá trị nào của m thì hệ có nghiệm (x;y) với x,y là các số nguyên dương
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
cho phương trình x^2-(m-1)x-m^2+m-2=0.Với giá trị nào của m thì c=x1^2 +x2^2 đạt giá trị nhở nhất
\(x^2-\left(m-1\right)x-m^2+m-2=0\)
Để pt có 2 nghiệm pb thì
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)>0\\ \Leftrightarrow m^2-2m+1+4m^2-4m+8>0\\ \Leftrightarrow5m^2-6m+9>0\\ \Leftrightarrow5\left(m^2-2\cdot\dfrac{3}{5}m+\dfrac{9}{25}+\dfrac{36}{25}\right)>0\\ \Leftrightarrow5\left(m-\dfrac{3}{5}\right)^2+\dfrac{36}{5}>0\left(luôn.đúng\right)\)
Do đó PT luôn có 2 nghiệm pb với mọi m
Áp dụng Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m-1}{1}=m-1\\x_1x_2=\dfrac{-m^2+m-2}{1}=-m^2+m-2\end{matrix}\right.\)
\(C=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\\ C=\left(m-1\right)^2-2\left(-m^2+m-2\right)\\ C=m^2-2m+1+2m^2-2m+4\\ C=3m^2-4m+5\\ C=3\left(m^2-2\cdot\dfrac{2}{3}m+\dfrac{4}{9}+\dfrac{11}{9}\right)\\ C=3\left(m-\dfrac{2}{3}\right)^2+\dfrac{11}{3}\ge\dfrac{11}{3}\\ C_{min}=\dfrac{11}{3}\Leftrightarrow m=\dfrac{2}{3}\)