Tìm tất cả các số nguyên dương n sao cho 2n -1 chia hết cho7
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
Tìm tất cả các số nguyên n sao cho 2n+1 chia hết cho 2n-1
Tìm tất cả các số nguyên n sao cho 2n-1 chia hết cho 9-n
Ta có : \(2n-1⋮9-n\)
\(\Rightarrow2\left(9-n\right)⋮9-n\)\(=18-2n⋮9-n\)
\(\Rightarrow2n-1+\left(18-2n\right)⋮9-n\)
\(\Rightarrow2n-n+18-2n⋮9-n\)
\(\Rightarrow17⋮9-n\)hay \(9-n\inƯ\left(17\right)\)
\(Ư\left(17\right)\in\left\{1;-1;17;-17\right\}\)\(\Leftrightarrow9-n\inƯ\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{8;10;-8;26\right\}\)
tìm tất cả các số nguyên dương lẻ n sao cho +1 chia hết cho n
Tìm tất cả các số nguyên dương n sao cho 2^n -1 chia hết cho 7
ta có: xy+3y-y=6
=> xy+2y=6
=> y(x+2)=6
vì x,y nguyên nên y,(x+2) là các ước của 6
ta có bảng sau
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
xy+3y-y=6
xy+y(3-1)=6
xy+y2=6
y(x+2)=6
lập bảng
x+2 | 2 | 3 | -2 | -3 |
y | 3 | 2 | -3 | -2 |
x | 0 | 1 | -4 | -5 |
vậy với các cặp x,y thỏa mãn là:
nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và (n + 1)2 + 1
Tìm tất cả các số nguyên dương n sao cho: 2n -1 chia hết cho 7
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Tìm tất cả các số nguyên dương N có 2 chứ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170
a)Tìm số nguyên n sao cho 2n-1laf bội của n+3
b)Tìm tất cả các số nguyên a biết:6a+1 chia hết cho 2a-1
a,2n-1 chia hết cho n+3
=> 2n+6-7 chia hết cho n+3
mà 2n+6 chia hết cho n+3
=>7 chia hết cho n+3
=> n-3 E Ư(7)
n-3={-7;-1;1;7}
=>n={-4;2;4;10}
b,6a+1 chia hết cho 2a-1
=>6a-3+4 chia hết cho 2a-1
mà 6a-3 chia hết cho 2a-1
=>4 chia hết cho 2a-1
=> 2a-1 E Ư(4)
2a-1={-4;-2;-1;1;2;4}
2a={-3;-1;0;2;3;5}
mà a là số nguyên
=> a={0;1}