Những câu hỏi liên quan
Nguyên Hoàng Quynh Anh
Xem chi tiết
Thanh Tùng DZ
5 tháng 2 2020 lúc 16:49

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tùng DZ
5 tháng 2 2020 lúc 17:01

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Mát
5 tháng 2 2020 lúc 17:06

Bài 1 : 

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm 

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Xét \(\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\hept{\begin{cases}\sqrt[3]{abc}\le\frac{a+b+c}{3}\\\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)}{3}\end{cases}}\)

Nhân từng vế :

\(\Rightarrow\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)^2}{9}\)

\(\Rightarrow\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{27}{2\left(a+b+c\right)^2}\)

Mà \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
Xem chi tiết

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

Bình luận (0)
Khôi Bùi
8 tháng 2 2019 lúc 20:21

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

Bình luận (0)
Phan Nghĩa
23 tháng 8 2020 lúc 21:22

e cũng có 1 vài cách chứng minh khá là cổ điển ạ !

Sử dụng BĐT AM-GM ta có :

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2.\frac{a}{2}=a\)

Bằng cách chứng minh tương tự :

\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b;\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng theo vế các bđt cùng chiều ta được :

\(\frac{a^2}{c+b}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+\frac{a}{2}+\frac{b^2}{a+c}+\frac{b}{2}+\frac{c^2}{a+b}+\frac{c}{2}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{b+a}\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(Q.E.D\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Fire Sky
Xem chi tiết
tth_new
9 tháng 8 2019 lúc 18:19

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

Bình luận (0)
tth_new
9 tháng 8 2019 lúc 18:29

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
tth_new
14 tháng 11 2019 lúc 13:39

Cách nữa cho bài 2:

2a) Ta có: \(4\left(a^2+1+2\right)\left(1+1+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)

Hay \(4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2=VP\)

Như vậy ta quy bài toán về chứng minh: \(\left(b^2+3\right)\left(c^2+3\right)\ge4\left(2+\frac{\left(b+c\right)^2}{2}\right)\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1\ge4bc\Leftrightarrow\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c = 1

b) Áp dụng BĐT Bunhiacopxki:\(\left(a^2+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+b^2+c^2+\frac{1}{2}\right)\ge\frac{1}{4}\left(a+b+c+1\right)^2\)

\(\Rightarrow\frac{5}{4}\left(a^2+1\right)\left(b^2+c^2+\frac{3}{4}\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)

Từ đó ta có thể quy bài toán về chứng minh: \(\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(b^2+c^2+\frac{3}{4}\right)\)

...

Bài 3:Sửa đề a, b, c >0

Có:  \(\frac{a^3}{b^2}+\frac{a^3}{b^2}+b\ge3\sqrt[3]{\frac{a^6}{b^3}}=\frac{3a^2}{b}\)

Tương tự: \(\frac{2b^3}{c^2}+c\ge\frac{3b^2}{c};\frac{2c^3}{a^2}+a\ge\frac{3c^2}{a}\)

Cộng theo vế 3 BĐT trên: \(2\left(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\right)+a+b+c\ge3\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(\ge2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+a+b+c\)

Từ đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Trần Thùy
Xem chi tiết
alibaba nguyễn
20 tháng 11 2018 lúc 8:56

\(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\)

\(=\frac{1}{abc}\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{1}{abc}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{abc}.\frac{\left(a+b+c\right)}{2}\)

\(\ge\frac{27}{\left(a+b+c\right)^3}.\frac{a+b+c}{2}=\frac{27}{2\left(a+b+c\right)^2}\)

Bình luận (0)
Trần Thùy
20 tháng 11 2018 lúc 9:01

Mình áp dụng BĐT Bunhiacopski được  ko bạn?

Bình luận (0)
tth_new
24 tháng 9 2019 lúc 9:03

\(VT\ge\frac{\left(a+b+c\right)^2}{2abc\left(a+b+c\right)}=\frac{\left(a+b+c\right)}{2abc}\ge\frac{\left(a+b+c\right)}{\frac{2\left(a+b+c\right)^3}{27}}=\frac{27}{2\left(a+b+c\right)^2}\)

Em làm thế này đúng không ta:3

Bình luận (0)
Nguyễn Anh Kim Hân
Xem chi tiết
Vũ Huy Hoàng
22 tháng 7 2019 lúc 20:28

Nhầm rồi nhé, thay a=b=c=1/3 thì phải ra là (10/3)^3 chứ

Bình luận (0)
Vũ Minh Anh
Xem chi tiết
Blue Moon
Xem chi tiết
tth_new
11 tháng 8 2020 lúc 20:12

Ta còn có:

Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)

đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))

Bình luận (0)
 Khách vãng lai đã xóa
hung
Xem chi tiết
Mai Thanh Hải
3 tháng 8 2017 lúc 19:09

a)

Đặt   \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Schwarz , ta có :

\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)  (1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)     (2)

Từ (1) và (2) , suy ra :  \(A\ge\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

b)

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)

Bình luận (0)
hung
4 tháng 8 2017 lúc 8:07

 tại sao lại dc cái này bạn

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}\)

Bình luận (0)
Mai Thanh Hải
4 tháng 8 2017 lúc 19:25

BDDT Schawars :

\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) ( vs a,b,x,y dương )

\(\Leftrightarrow x^2b\left(a+b\right)+y^2a\left(a+b\right)=ab\left(x+y\right)^2\)

\(\Leftrightarrow x^2ab+x^2b^2+y^2a^2+y^2ab\ge x^2ab+2abxy+y^2ab\)

\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)

\(\Leftrightarrow\left(xb-ya\right)^2\ge0\) ( Luôn đúng )

''='' khi \(xb=ya\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

Áp dụng , ta có :

\(B=\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)\right]^2}{a+c}+\frac{\left(c+a\right)^2}{b}\)

\(\Rightarrow B\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=\frac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

 Dấu "=" xảy ra khi \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\Rightarrow a=b=c\)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Bình luận (0)
 Khách vãng lai đã xóa