\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{27\cdot28\cdot29}\)
Tìm B
Tính tổng A=\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot5\cdot6}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)
.......
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)
\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{6}-\frac{1}{24360}\)
\(3A=\frac{1353}{8120}\)
\(A=\frac{1353}{8120}:3\)
\(A=\frac{451}{8120}\)
Ta có:3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+.............+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1353}{8120}\Rightarrow A=\frac{451}{8120}\)
Tính \(A=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}+\frac{1}{2\cdot3\cdot4\cdot5\cdot6}+...+\frac{1}{26\cdot27\cdot28\cdot29\cdot30}\)
Tính tổng :
a) \(A=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
b) \(B=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
c) \(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
d) \(D=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
e) \(E=\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\right)\cdot1482\cdot185\cdot8\)
Tính tổng :
a) \(A=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
b) \(B=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
c) \(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
d) \(D=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
e) \(E=\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\right)\cdot1482\cdot185\cdot8\)
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
C1. Tìm \(\frac {a}b\), biết rằng :
a, \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
b, \(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
c, \(C=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
C2. Tìm x :
1. \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\left(x+1\right)}{2}}=1\frac{1991}{1993}\)
2. \(\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{11\times14}+...+\frac{1}{x\times(x+3)}=\frac{101}{1540}\)
Tìm số tự nhiên x,y biết :x-3=y*(x+2)
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
chứng tỏ \(\frac{1}{1\cdot2}+\frac{1}{1\cdot2\cdot3}+\frac{1}{1\cdot2\cdot3\cdot4}+...+\frac{1}{1\cdot2\cdot3....100}< 1\)
chứng tỏ \(\frac{1}{1\cdot2}+\frac{1}{1\cdot2\cdot3}+\frac{1}{1\cdot2\cdot3\cdot4}+...+\frac{1}{1\cdot2\cdot3\cdot...\cdot100}< 1\)
Tính nhanh
B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)