Tìm \(K\) để \(A=\left(x^4-9x^3+21x^2+x+K\right)\)chia hết cho \(B=\left(x^2-x-2\right)\)
Xác định giá trị k để đa thức: \(f\left(x\right)=x^4-9x^3+21x^2+x+k\) chia hết cho đa thức \(g\left(x\right)-x^2-x-2\)
\(\Leftrightarrow x^4-9x^3+21x^2+x+k⋮x^2+x+2\)
\(\Leftrightarrow x^4+x^3+2x^2-10x^3-10x^2-20x+29x^2+29x+58-8x+k-58⋮x^2+x+2\)
=>-8x+k-58=0
=>k=8x+58
Xác định giá trị k để đa thức: \(f\left(x\right)=x^4-9x^3+21x^2+x+k\) chia hết cho đa thức \(g\left(x\right)-x^2-x-2\)
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
Tìm a,b
A)\(\left(x^4-9x^3+21x^2ẫx+b\right)\)chia hết \(\left(x^2-x+2\right)\)
Tìm a , b để F(x) = \(x^3+x^2-x+a\)
Chia hết cho G(x) = \(\left(x+1\right)^2\)
b, Tìm a , b để F(x)= \(x^4-9x^3+21x^3+ax+b⋮9x=x^2-x-2\)
Tìm giá trị của a,b để có phép chia hết:
a)(x^4-9x^3+21x^2+x+a)chia hết cho x^2-x-2
b)(x^4-9x^3+21x^2+ax+b) chia hết cho x^2-x-2
help me!!!...
1. tìm x để hai biểu thức A và B sau đây có giá trị bằng nhau:
a) \(A=\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)\)và \(B=\left(x-4\right)^2\)
b)\(A=\left(x+2\right)\left(x-2\right)+3x^2\)và \(B=\left(2x+1\right)^2+2x\)
2. Tìm giá trị của k sao cho phương trình \(\left(2x+1\right)\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x = 2
Bài 2 thay 2 vào x rồi giải bình thường tìm k
Cho f(x)=x4-9x3+21x2+x+a; g(x)=x2-x-2
h(x)=x3+bx2+cx-5; k(x)=x2+x+1
Tìm a, b, c để:f(x)\(⋮g\left(x\right)\) \(\forall x\); h(x)\(⋮k\left(x\right)\)\(\forall x\)
mn giúp mình nha mai cần r
Tìm giá trị của a,b để có phép chia hết:
a)(x^4-9x^3+21x^2+x+a)chia hết cho x^2-x-2
b)(x^4-9x^3+21x^2+ax+b) chia hết cho x^2-x-2
Mn làm ơn giải chi tiết ra cho mình với nha
a) Đặt P= x4-9x3+21x2+x+a; Q= x2-x-2
Do đa thức P có bậc là 4, đa thức Q có bậc là 2 mà P chia hết cho Q nên đa thức thương có bậc là 2
Đa thức thương có dạng : x2+cx+d
=> x4-9x3+21x2+x+a=(x2-x-2)(x2+cx+d)
=> x4-9x3+21x2+x+a = x4+cx3+dx2-x3-cx2-dx-2x2-2cx-2d
=> x4-9x3+21x2+x+a = x4+(c-1)x3+(d-c-2)x2-(d-2c)x-2d
=> c-1=-9 =>c=-8 =>c=-8
d-c-2=21 d=21+2+(-8) d=15
-2d=a a=-2d a=(-2).15=-30
Vậy a=-30 để có phép chia hết x4-9x3+21x2+x+a cho x2-x-2
Câu còn lại làm tương tự thôi
Gia Huy Đào bạn làm nhầm 1 dấu r phải là -(d+2c)