Câu 2:
A \(=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
Tìm n để A là 1 số nguyên.
S=$\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$
2n+1
n−3 +
3n−5
n−3 −
4n−5
n−3
a, tìm n để A là phân số tối giản
b, tìm n để S có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Câu hỏi tương tự Đọc thêm
Tìm n để biểu thức sau là số nguyên :
\(A=\frac{2n+1}{n+2}-\frac{n+1}{n+2}+\frac{3n+5}{2n+4}+\frac{4n+6}{3n+6}-\frac{10n+12}{5n+10}-\frac{12n+3}{4n+8}\)
\(A=\frac{2n+1}{2-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
Tìm n để:
a.A là 1 phân số
b.A là 1 số nguyên
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(A=\frac{2\left(n-3\right)+7}{n-3}+\frac{3\left(n-3\right)+4}{n-3}+\frac{4\left(n-3\right)+7}{n-3}\)
\(A=2+\frac{7}{n-3}+3+\frac{4}{n-3}+4+\frac{7}{n-3}\)
\(A=9+\frac{7+4+7}{n-3}\)
\(A=9+\frac{18}{n-3}\)
=> A là phân số <=> \(\frac{18}{n-3}\)là phân số <=>n - 3 khác Ư ( 18 ) <=> n - 3 khác ( 1 ; -1 ; 2 ; -2 ; .. ;18 ; -18 )
Tự làm nha
b, A thuộc Z <=> \(\frac{18}{n-3}\)l thuộc Z <=> n -3 thuộc Ư ( 18 ) <=<> .....
Câu 2. Cho biểu thức: \(\frac{2n+1}{n-3}\) +\(\frac{3n-5}{n-3}\)-\(\frac{4n-5}{n-3}\)
Tìm giá trị của n để: a, A là một phân số. b, A là một số nguyên
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n+5}{n-3}\)
\(=\frac{n+1}{n-3}\)
a) Để A là phân số thì \(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
Ta có n+1=n-3+4
=> 4 \(⋮\)n-3
=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Đặt \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)
a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)
b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)
A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, Rút gon A
b. Tìm số nguyên n để Á nhận giá trị là số nguyên.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a,Tìm n để A nhận giá trị nguyên
b,Tìm n để A là phân số tối giản
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
Cho biểu thức A=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tim n để A là phân số tối giản
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}\)
a) Tìm n để A là số nguyên.
b)Chứng minh :\(\frac{12n+1}{30n+2}\)là phân số tối giản.
1, tìm tất cả số nguyên để phân số tối giản:
\(\frac{18n+3}{21n+7}\)và \(\frac{2n+7}{5n+2}\)
2, tìm số nguyên n để các phân số sau là số nguyên:
A=\(\frac{n^2+4n-2}{n+3}\)
B=\(\frac{4n-3}{3n-1}\)
C=\(\frac{n^2+3n-3}{x-5}\)