Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ji Yeon Park
Xem chi tiết
Giản Nguyên
25 tháng 2 2018 lúc 21:36

a, bạn dễ dàng chứng minh được tam giác ABC vuông tại A theo định lí Py-ta-go đảo

-áp dụng tỉ số lượng giác sinB = \(\frac{4,5}{7,5}\)=> góc B= 37o => góc C = 53o

-áp dụng HTL cho tam giác vuông ABC có đường cao AH: AH.BC = AB.AC => AH = 3,6 (cm)

Ji Yeon Park
25 tháng 2 2018 lúc 22:16

Bạn giúp mk luôn câu b đc ko mk hơi bí

Ji Yeon Park
Xem chi tiết

Tham khảo:Cho tam giác ABC có AB = 6cm; AC = 4,5; BC = 7,5cm
a) Chứng minh tam giác ABC vuông
b) Tính góc B,C và đường cao AH
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB;AC lần lượt là P và Q. Chứng minh PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất

a) Ta thấy BC là cạnh dài nhất sẽ là cạnh huyền
Áp dụng Pytago đảo
AB² + AC² = 6² + 4,5² = 56.25
BC² = 7,5² = 56,25
=> AB² + AC² = BC²
=> Vuông tại A
=> Tam giác ABC là tam giác vuông
b)
sinB = AC / BC = 4,5 / 7,5 = 3 / 5
=> Góc B = 36°52'
sinC = AB / BC = 6 / 7,5 = 4 / 5
=> Góc C = 53°7'
c)
Ta dễ dàng cm AQMP là hình chữ nhật
Suy ra: 2 đường chéo hình chữ nhật bằng nhau.
Để PQ nhỏ nhất  AM nhỏ nhất
 AM VUÔNG GÓC VỚI BC
Vậy khi M là hình chiếu của điểm A trên BC thí pq nhỏ nhất

Nguyễn Huỳnh Hoàng Anh
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 22:17

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

Edogawa Conan
1 tháng 7 2021 lúc 22:22

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

Edogawa Conan
1 tháng 7 2021 lúc 22:28

b)Ta có:AB2=BC.BH

  \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)

Ta có:BH+CH=BC

     =>CH=BC-BH=7,5-4,8=2,7 (cm)

 

Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2021 lúc 21:47

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(Cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)

Trang Dang
Xem chi tiết
Trịnh Hà _Tiểu bằng giải
Xem chi tiết
Không Tên
28 tháng 3 2018 lúc 21:36

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=4,5^2+6^2=56,25\)

\(\Leftrightarrow\)\(BC=\sqrt{56,25}=7,5\) cm

     Xét  \(\Delta ABC\)và     \(\Delta DEC\)  CÓ:

        \(\widehat{BAC}=\widehat{EDC}=90^0\)

        \(\widehat{ACB}\)   CHUNG

Suy ra:   \(\Delta ABC~\Delta DEC\)

\(\Rightarrow\)\(\frac{BC}{EC}=\frac{AC}{DC}\)  \(\Rightarrow\)\(EC=\frac{BC.DC}{AC}\)

HAY    \(EC=\frac{7,5\times2}{6}=2,5\)

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      \(DE^2=EC^2-DC^2\)

\(\Leftrightarrow\)\(DE^2=2,5^2-2^2=2,25\)

\(\Leftrightarrow\)\(DE=\sqrt{2,25}=1,5\)

Vậy   \(S_{DEC}=\frac{DE.DC}{2}=\frac{1,5\times2}{2}=1,5\)CM2

Lê An Huy
Xem chi tiết
Minh Trí
30 tháng 3 2022 lúc 21:59

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

Minh Trí
30 tháng 3 2022 lúc 22:00

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

Nguyễn Minh Nhật
Xem chi tiết