Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sdhsdfgh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Mashiro Shiina
Xem chi tiết
Trên con đường thành côn...
8 tháng 8 2021 lúc 8:11

undefined

Đặng Nguyễn Xuân Ngân
Xem chi tiết
Trần Thu Uyên
21 tháng 7 2016 lúc 18:43

\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{3a}{3c}=\frac{5b}{5d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}=\frac{3a+5b}{3c+5d}\)

=> Đpcm

Chúc bạn làm bài tốt

Tạ Quang Toàn
3 tháng 12 2017 lúc 8:40

vì a/b= c/d

⇒ a+b/c+d=3a+5b/3c+5d=3a-5b/3c-5d

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

3a+5b/3c+5d=3a-5b/3c-5d

⇒ 3a+5b/3a-5b=3c+5d/3c-5d (đpcm)

Tạ Quang Toàn
3 tháng 12 2017 lúc 8:42

đúng 100 %

Chúc bạn học tốt

Nguyễn Minh An
Xem chi tiết
Đức fireshock
Xem chi tiết
Akai Haruma
22 tháng 8 2023 lúc 15:10

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$

Khi đó:

$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$

$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$

Từ $(1); (2)$ ta có đpcm.

Phạm Trung Thành
Xem chi tiết
Trịnh Xuân Diện
11 tháng 10 2015 lúc 22:07

Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}\)

Aps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}\)

=>\(\frac{a}{c}=\frac{3a+4b}{3c+4d}=>\frac{3c+4d}{c}=\frac{3a+4b}{a}\)(đpcm)

Trần Thị Diễm Quỳnh
11 tháng 10 2015 lúc 21:59

a/b=c/d

=>a/c=b/d=3a/3c=4b/4d=(3a+4b)/(3c+4d) (tính chất dãy tỉ số = nhau)

có a/c=(3a+4b)/(3c+4d)

=>dpcm

nguyễn văn hà
Xem chi tiết
Phạm Minh Quân
Xem chi tiết
Lightning Farron
30 tháng 1 2017 lúc 14:58

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\)\(\left\{\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a)Xét \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

Xét \(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

b)Xét \(VT=\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\left(1\right)\)

Xét \(VP=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

le duc minh vuong
Xem chi tiết
Nguyễn Huy Tú
5 tháng 1 2017 lúc 12:27

Giải:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)

Vậy...