Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hoàng Bảo Hân
Xem chi tiết
....
Xem chi tiết
Akai Haruma
10 tháng 6 2021 lúc 10:32

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

Yeutoanhoc
10 tháng 6 2021 lúc 11:02

`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`

`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`

`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`

`=(3sqrtx-9)/(x-9)`

`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`

`=3/(sqrtx+3)`

`b)A=1/3`

`<=>3/(sqrtx+3)=1/3`

`<=>sqrtx+3=9`

`<=>sqrtx=6`

`<=>x=36(tm)`

`c)A=3/(sqrtx+3)`

`sqrtx+3>=3>0`

`=>A<=3/3=1`

Dấu "=" xảy ra khi `x=0`

Hồng Trần
9 tháng 2 2022 lúc 15:04

Cho hàm số: y= f(x) = -2x+5 (1)

a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ 

b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính

 

đỗ thị hồng nhung
Xem chi tiết
Diệp An Nhiên
Xem chi tiết
Diệp An Nhiên
2 tháng 9 2019 lúc 14:11

AI GIẢI HỘ MÌNH K CHO Ạ!!!

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:34

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:40

2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)

b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)

Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)

c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)

P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)

\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)

d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)

\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Lập bảng:

\(2\sqrt{x}-3\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(\sqrt{x}\)\(2\)\(1\)\(3\)\(0\)\(6\)\(-3\)
\(x\)\(4\)\(1\)\(9\)\(0\)\(36\)\(L\)

Vậy \(x\in\left\{1;4;9;0;36\right\}\)

Công Minh
Xem chi tiết
Hà Trí Kiên
Xem chi tiết

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Nguyễn Mạnh Khang
Xem chi tiết
Diệu Linh Trần
Xem chi tiết
Phạm Lan Hương
25 tháng 10 2019 lúc 19:26

sử dụng hằng đẳng thức là đc bạn

Khách vãng lai đã xóa
Loan Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:50

Câu 6:

ĐKXĐ: \(x\ne-\dfrac{1}{3}\)

Để \(\dfrac{9x+4}{3x+1}\in Z\) thì \(9x+4⋮3x+1\)

=>\(9x+3+1⋮3x+1\)

=>\(1⋮3x+1\)

=>\(3x+1\in\left\{1;-1\right\}\)

=>\(3x\in\left\{0;-2\right\}\)

=>\(x\in\left\{0;-\dfrac{2}{3}\right\}\)

mà x nguyên

nên x=0

Câu 2:

a: ĐKXĐ: \(x\notin\left\{2;-2;0\right\}\)

b: \(A=\left(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x-2}\right)\cdot\dfrac{x^2-4x+4}{4x}\)

\(=\left(\dfrac{1}{x+2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x-2}\right)\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{x-2+2x+x+2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{4x\left(x-2\right)}{4x\left(x+2\right)}=\dfrac{x-2}{x+2}\)