số dư khi chia 3x^3-x^2+x-1 cho 2-x
mọi người giải giúp bài này
chia f(x) cho x^2+x+3 dư 1-2x,chia x^2-x+3 dư 3x-5. Tìm số dư của f(x) khi chia cho x^4+5x^2+9
Biết rằng đa thức P(x) chia x - 1 dư 3; chia x - 2 dư 4. Tìm dư khi chia P(x) cho x2 - 3x + 2
Ta có:
\(P\left(x\right)=\left(x-1\right)P\left(x\right)+3\)(1)
\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+4\)(2)
\(P\left(x\right)=\left(x-1\right)\left(x-2\right)H\left(x\right)+ax+b\)(3) \(\left[x^2-3x+2=\left(x-1\right)\left(x+2\right)\right]\)
(đa thức dư là ax + b vì đa thức bị chia có bậc 2 thì đa thức đư có bậc 1)
Thay x = 1 vào (1), được P(1) = 3
Thay x = 1 vào (3), được \(a+b=3\) (4)
Thay x = 2 vào (2), có P(2) = 4
Thay x = 2 vào (2), có 2a + b = 4 (5)
Từ (4) và (5), ta tính được a = 1, b = 2
Vậy đa thức dư khi chia P(x) cho \(x^2-3x+2\)là \(ax+b=x+2\)
cho đa thức p(x)=3x^3-5x^2+ax+b khi chia p(x) cho x+2 thì không còn dư nhưng khi chia p(x) cho x-1 thì dư -2
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
Giả sử f(x)chia cho x+2 dư 3 chia cho x2+2 dư 3x+1. tìm dư của f(x)khi chia cho(x+2)(x2+2)
NHANH HỘ MK CÁI
THANK
Ta có:
+) f(x) : (x+2) dư 3
=> Tồn tại đa thức g(x) sao cho: \(f\left(x\right)=\left(x+2\right).g\left(x\right)+3\)(1)
+) f(x) : x2 +2 dư 3x + 1.
=> Tồn tại đa thức h(x) sao cho: \(f\left(x\right)=\left(x^2+2\right).g\left(x\right)+3x+1\)(2)
+) Vì (x + 2)(x^2 + 2) có bậc là 3 => \(f\left(x\right):\left(x+2\right)\left(x^2+2\right)\) có dư là đa thức có bậc là 2
Giả sự số dư là: \(ax^2+bx+c\)
=> Tồn tại đa thức k(x) sao cho: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+ax^2+bx+c\)
Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+a\left(x^2+2\right)+bx+c-2a\)
\(=\left(x^2+2\right)\left[\left(x+2\right).k\left(x\right)+a\right]+bx+c-2a\)(3)
Từ (2), (3) => \(bx+c-2a=3x+1\)=> \(\hept{\begin{cases}b=3\\c-2a=1\end{cases}}\)(4)
Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+\left(x+2\right).\left(ax+b-2a\right)+c+4a-2b\)
\(=\left(x+2\right)\left(\left(x^2+2\right).k\left(x\right)+\left(ax+b-2a\right)\right)+c+4a-2b\)(5)
Từ (1) và (5) => \(c+4a-2b=3\) (6)
Từ (4) và (6) => c = 11/3; a =4/3 ; b =3
Vậy số dư là: \(\frac{4}{3}x^2+3x+\frac{11}{3}\)
Một đa thức khi chia cho x+1 thì dư 2, chia cho x+2 thì dư 3. Tìm số dư khi đa thức đó chia cho (x+1)(x+2)
Một đa thức f(x) chia cho \(x^2+x+1\)thì dư \(1-x\) , chia cho \(x^2-x+1\)thì dư 3x + 5. Tìm số dư của f(x) khi chia cho \(x^4+x^2+1\)
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
1) CMR đa thức P(x)=\(x^5-3x^4+6x^3-3x^2+9x-6\) không thể có nghiệm là số nguyên.
2) Đa thức P(x) chia cho (x-1) được số dư bằng 4, chia cho (x-3) được số dư bằng 14. Tìm số dư của phép chia P(x) cho (x-1)(x-3)
Câu 2:
\(P\left(x\right)\) chia \(x-1\) dư 4 \(\Rightarrow P\left(x\right)=\left(x-1\right).Q\left(x\right)+4\)
\(\Rightarrow P\left(1\right)=4\)
Tương tự: \(P\left(x\right)=\left(x-3\right).R\left(x\right)+14\Rightarrow P\left(3\right)=14\)
Do \(\left(x-1\right)\left(x-3\right)\) bậc 2 nên số dư tối đa của phép chia là bậc 1
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-3\right).H\left(x\right)+ax+b\)
Thay \(x=1\Rightarrow P\left(1\right)=a+b\Rightarrow a+b=4\)
Thay \(x=3\Rightarrow P\left(3\right)=3a+b\Rightarrow3a+b=14\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\3a+b=14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=5\\b=-1\end{matrix}\right.\)
Số dư của phép chia là \(5x-1\)
a/ Nếu \(x⋮3\)
\(P\left(x\right)=0\Leftrightarrow x^5-3x^4+6x^3-3x^2+9x-6=0\)
\(\Leftrightarrow x^5-3x^2\left(x-1\right)^2+9x=6\)
Vế trái chia hết cho 9, vế phải không chia hết cho 9 nên pt vô nghiệm
- Nếu \(x⋮̸3\)
\(P\left(x\right)=0\Leftrightarrow x^5=3\left(x^4-2x^3+x^2-3x+2\right)\)
Vế trái ko chia hết cho 3, vế phải chia hết cho 3
Vậy pt luôn luôn vô nghiệm
Số dư khi chia đa thức 3x3-x2+x-1 cho 2-x
Ai nhanh được tick. Chi tiết nhé!
2-x=0 <=>x=2
Áp dụng định lý Bơ-du ta có số dư của phép chia \(Q\left(x\right)=3x^3-x^2+x-1\) cho \(2-x\)là:
\(Q\left(2\right)=3.\left(2\right)^3-\left(2\right)^2+2-1=21\)