Nếu AC cắt BD tại I thì A,I,C thẳng hàng chưa hay là phải chứng minh
Cho tam giác ABC có đường trung tuyến BO . Trên tia BO lấy điểm D sao cho O là trung điểm của BD. Gọi M là trung điểm của BC. Đường thẳng DM cắt AC tại I và cắt AB tại E.
Chứng minh :
a) CD//AB
b) C/minh: I là trọng tâm tam giác BCD và AC=6. IO
c) BE=AB
d) BD cắt AM tại K . Chứng minh : C,K và trung điểm của AB thẳng hàng.
Bạn tự vẽ hình nha
a.
Xét tam giác ABO và tam giác CDO có:
AO = CO (BO là trung truyến của tam giác ABC)
AOB = COD (2 góc đối đỉnh)
BO = DO (gt)
=> Tam giác ABO = Tam giác CDO (c.g.c)
=> BAO = DCO (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD.
b.
BO là trung tuyến của tam giác ABC
=> O là trung điểm của AC
=> AO = CO = \(\frac{1}{2}AC\) (1)
BO = DO (gt) => CO là trung tuyến của tam giác BCDBM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD
=> I là trọng tâm của tam giác BCD.
=> IO = \(\frac{1}{3}OC\) (2)
Thay (1) vào (2), ta có:
IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)
\(\Rightarrow AC=6\times IO\)
c.
AB // CD
=> EBM = DCM (2 góc so le trong)
Xét tam giác EBM và tam giác DCM có:
EBM = DCM (chứng minh trên)
BM = CM (M là trung điểm của BC)
BME = CMD (2 góc đối đỉnh)
=> Tam giác EBM = Tam giác DCM (g.c.g)
=> BE = CD (2 cạnh tương ứng)
mà CD = AB (tam giác ABO = tam giác CDO)
=> BE = AB.
Chúc bạn học tốt
Nói trước đừng tin lời tớ vì tớ học ngu hình lắm!
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N. Gọi I là trung điểm của CN. Chứng minh ba điểm B, M, I thẳng hàng.
Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAN=ΔMDC
=>AN=DC và MN=MC
Ta có: BA+AN=BN
BD+DC=BC
mà BA=BD và AN=DC
nên BN=BC
=>B nằm trên đường trung trực của NC(1)
ta có: MN=MC
=>M nằm trên đường trung trực của NC(2)
Ta có: IN=IC
=>I nằm trên đường trung trực của NC(3)
từ (1),(2),(3) suy ra B,M,I thẳng hàng
Cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G,AC cắt BC tại M.
a) Chứng minh DE song song BC và DE= 1/2 BC
b) chứng minh (AB+AC-BC)/2 <AM< (AB+AC)/2
c) Đường thẳng qua B song song CG cắt đường thẳng C song song BG. CM A,G,I thẳng hàng
Cho ∆ABC nhọn có AB<AC, I là trung điểm BC. Trên tia đối IA lấy D sao cho ID=IA
a. Chứng minh ∆AIC=∆DIB và AC//BC
b. Kẻ AH ⊥ BC tại H, DK ⊥ BC tại K. Chứng minh AH//DK và AH=DK
c. Kéo dài AH cắt BD tại M, kéo dài DK cắt AC tại N. Chứng minh 3 điểm M,I,N thẳng hàng ?
(Tớ cần chứng minh câu c )
Cho tứ giác ABCD. AB cắt DC tại E, AD cắt BC tại E, AD cắt BC tại F. Gọi I, J, K là trung điểm AC, BD, EF. Chứng minh: I, J, K thẳng hàng
đề bài kiểu gì vậy bạn??
có gì sai hả bạn?
phần các độn cắt nhau á bạn, mình thấy vô lý quá, không ra cái hình gì cả
Giúp mình nha mai mik kiểm tra HKI rồi THanks
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm I của mỗi đoạn
a) Chứng minh AC = BD
b) Chứng minh AC//BD
c) TRên đoạn AC LẤY ĐIỂM m TRÊN ĐOẠN BD lấy điểm N sao cho AM =BN Chứng minh M, I, N thẳng hàng
Mik chỉ cần các bạn chứng minh ba điểm thằng hàng thôi ko cần chứng minh 2 câu trên và vẽ hình
-Ta có:AC song song với BD
=>CAB = ABD(2 góc so le trong)
-Xét tam giác AMI và BMI,ta có:AM=BN(gt), CAB=ABD(gt), AI=IB(gt)
=>Hai tam giác AMI và BMI bằng nhau
=>MIA = NIB(2 góc tương ứng)
-Ta có:NIA + NIB =180 độ(2 góc kề bù)
-Mà MIA = NIB(cmt)
=>NIA + MIA =180 độ
=>MIN = 180 độ
=>M, I, N thẳng hàng
Cho hình chữ nhật ABCD có cạnh AB=4cm , BC =3cm.
a, Tính độ dài đoạn BD.
b, Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. chứng minh: tam giác BCD đồng dạng với tam giác CFB và tính CF
c, Gọi O là giao điểm của AC & BD. Nối Eo cắt CF tại I , cắt BC tại K. Chứng minh I là trung điểm của đoạn CF.
d, Chứng minh 3 điểm D, K, F thẳng hàng.