Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của BO và AO
cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của BO, AO. Lấy điểm F thuộc cạnh AB sao cho tia FM cắt BC tại E, FN cắt AD tại K. chứng minh BE+AK lớn hơn hoặc bằng BC
+) Kẻ: AJ // CI //EF; I; J thuộc BD và M thuộc EF
Xét \(\Delta\)BAJ có: FM // AJ
=> \(\frac{BA}{BF}=\frac{BJ}{BM}\)
Xét \(\Delta\)BCI có: ME // IC
=> \(\frac{BC}{BE}=\frac{BI}{BM}\)
Từ hai điều trên => \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BJ}{BM}+\frac{BI}{BM}=\frac{BI+BJ}{BM}\)(1)
Xét \(\Delta\)AJO và \(\Delta\)CIO có:
OA = OC ( ABCD là hình bình hành)
^AOJ = ^COI ( đối đỉnh)
^AJO = ^CIO ( AJ // CI , so le trong )
=> \(\Delta\)AJO = \(\Delta\)CIO ( g-c-g)
=> JO = IO
KHi đó BI + BJ = BO + OI + BO - JO = 2 BO + (IO - JO) = 2 BO = 2.2. BM = 4BM ( vì M là trung điểm BO )
=> BI + BJ = 4BM Thế vào (1)
=> \(\frac{BA}{BF}+\frac{BC}{BE}=\frac{4BM}{BM}=4\)(2)
+) Kẻ BH // BG //FK với H; G thuộc AC
Chứng minh tương tự như trên ta suy ra: \(\frac{BA}{AF}+\frac{AD}{AK}=4\)(3)
Cộng (2) + (3) vế theo vế:
\(\frac{BA}{BF}+\frac{BC}{BE}+\frac{BA}{AF}+\frac{AD}{AK}=8\)mà AD = BC
=> \(AB\left(\frac{1}{BF}+\frac{1}{AF}\right)+BC\left(\frac{1}{BE}+\frac{1}{AK}\right)=8\)(4)
Mặt khác: \(\frac{1}{BF}+\frac{1}{AF}=\frac{1^2}{BF}+\frac{1^2}{AF}\ge\frac{\left(1+1\right)^2}{BF+AF}=\frac{4}{AB}\) và \(\frac{1}{BE}+\frac{1}{AK}\ge\frac{4}{BE+AK}\)
KHi đó: \(8\ge AB.\frac{4}{AB}+BC.\frac{4}{BE+AK}\)
<=> \(BE+AK\ge BC\)
Dấu "=" xảy ra <=> BF = AF và BE = AK
Hay F là trung điểm AB.
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. M,N lần lượt là trung điểm của BO và AO. Gọi F là một điểm bất kì trên AB. FN cắt AD tại , FM cắt BC tại E. Chứng minh:(BA/BF) + (BC/BE) =4
+ Kẻ AH // FE // CI \(\left(H,I\in BD\right)\)
+ \(\Delta AOH=\Delta COI\left(g.c.g\right)\)
\(\Rightarrow OH=OI\)
\(\Rightarrow BH+BI=BH+BO+OI\)
\(=BH+OH+BO=2BO=4BM\)
+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có :
\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)
+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có :
\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)
+ Từ (1) và (2) \(\Rightarrow\)
\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)
Chúc bạn học tốt !!!
Cho hình bình hành ABCD tâm O. Gọi M,N lần lượt là trung điểm BO,AO. Lấy điểm F trên cạnh AB sao cho tia FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. CM: a)BA/BF+BC/BE=4 b) BE+AK>,BC
Giúp tui với mai nộp rồi
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB. Giao tuyến của (MNC) và (ABD) là:
A. OM
B. CD
C. OA
D. ON
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB. Giao tuyến của M N C và A B D là:
A. OM
B. CD
C. OA
D. ON
Đáp án B
Dễ thấy M N | | A B nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến là đường thẳng qua C và song song với AB.
Vậy giao tuyến của (MNC) và (ABD) là đường thẳng CD.
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường nào trong các đường thẳng sau đây?
A. OA
B. OM
C. ON
D. đường thẳng d qua O và d // AB
Đáp án D
Theo câu 13, ta có MN // AB
Lại có: O ∈ (MNO) ∩ (ABCD)
Vậy giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường thẳng d đi qua O và song song với AB.
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
Bài 1. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của BC và AD. C/m tứ giác BMDN là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của DM và AN. Gọi Q là giao điểm của CM và BN. C/m tứ giác PMQN là hình bình hành.
Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.