Cho hình vuông abcd. Từ điểm m thuộc cạnh bc vẽ đường thẳng cắt cd ở k sao cho góc amb = mak. Kẻ đường cao ah vuông góc với mk ở h
1) tamgiác abm =ahm và ah=ad
2 ) tam giác dak = hak
3) góc mak =1/2 a =45 độ
cho hình vuông ABCD. Từ điểm M thuộc cạnh BC vẽ đường thẳng cắt CD tại K
sao cho AMB=AMK. kẻ AH vuông góc với MK ở
c/m tam giac ABM=AHM va AH=HD
b, c/m tam giac DAK= tam giac AHK
c, c/m MAK=1/2 A= 45 do
a: Xét ΔAHM vuông tại H và ΔABM vuông tại B có
MA chung
\(\widehat{AMH}=\widehat{BMA}\)
Do đó: ΔAHM=ΔABM
=>AH=AB=AD
b: Xét ΔADK vuông tại D và ΔAHK vuông tại H có
AK chung
AD=AH
Do đó: ΔADK=ΔAHK
c: \(\widehat{MAK}=\widehat{MAH}+\widehat{KAH}\)
\(=\dfrac{1}{2}\left(\widehat{BAH}+\widehat{DAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
cho hình vuông ABCD. Từ điểm M thuộc cạnh BC, vẽ đường thẳng cắt CD ở K sao cho góc AMB = góc AMK. Kẻ AH vuông góc MK ở H. CM: 1,Tam giác ABM = tam giác AHM và AH=AD .2,Tam giác DAK = tam giác HAK. 3,Góc MAK=1/2 góc A=45 độ
1: Xét ΔABM vuông tại B và ΔAHM vuông tại H có
MA chung
góc BMA=góc HMA
=>ΔABM=ΔAHM
=>AH=AB=AD
2: Xét ΔADK vuông tại D và ΔAHK vuông tại H có
AK chung
AD=AH
=>ΔADK=ΔAHK
3: góc MAK=góc MAH+góc KAH
=1/2(góc BAH+góc DAH)
=1/2*90=45 độ
Cho hình vuông ABCD, M thuộc BC, qua M vẽ đường thẳng cắt DC ở K và góc AMB= góc AMK. Từ A kẻ AH vuông góc MK
a, cm: tam giác AMK = tam giác AMB
b, cm: góc KAM= góc 45°
Bài2
Hình thang abcd, góc A= góc D=90°. CD=2AB=2AD. H là hình chiếu của D lên AC. M,P,Q lần lượt là trung điểm của CD,HC,HD
a, cm: tứ giác ABMD vuông, tam giác BDC vuông cân
b, cm: DMPQ là hình bình hành
c, cm AQ vuông góc DP
Cho tam giác ABC vuông tại A (AC>AB) vẽ đường cao AH và biết góc ABC= 60 độ. đường trung trực của đoạn thẳng AB cắt BC ở M và cắt AB ở I. Đường thẳng đi qua C và vuông góc với AM ở E cắt AH kéo dài ở F.
a) chứng minh tam giác ABM là tam giác đều và tam giác AHM = tam giác CEM
b) giả sử biết AC=\(6\sqrt{3}\)
TÍNH AH
c) gọi K là điểm thuộc tia HB sao cho HK=1/2KM.
CHỨNG TỎ 3 ĐIỂM I,K,F THẲNG HÀNG
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Cho tam giác ABC có AB = BC. Tia phân giác của góc BAC cắt cạnh BC tại M. Từ M kẻ MH vuông góc AB tại H ( H thuộc AB ) ; Từ M kẻ MK vuông góc với AC tại K ( K thuộc AC )
a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh tam giác AHM = tam giác AKM từ đó so sánh hai đoạn thẳng AH và AK
c) Chứng minh HK vuông góc vs AM
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2
1. Cho tam giác ABC có góc A = 90 độ , góc C = 30 độ. Từ trung điểm E của cạnh AB vẽ đường thẳng vuông góc với AB cắt BC ở F.
a) Tứ giác AEFC là hình gì? Vì sao?
b) Tính độ đà các cạnh của tứ giác AEFC, biết AB= 3cm.
2. Cho hình thang ABCD có góc A= góc B = 90 độ ; AB=BC=1/2AD=3cm.
a) Tính các góc của hình thang .
b) Chứng minh AC vuông góc với CD
c) Tính chu vi hình tahng.
3. Chứng minh rằng tứ giác ABCD là hình thang (AD//BC) khi và chỉ khi phân giác của góc Avaf góc B vuông góc với nhau.
4. Cho hình thang cân ABCD có AD//BC, AB = 3cm, CD= 6cm, AD= 2.5cm. Vẽ 2 đường cao AH, BK. Tính DH,DK,AH
Cho tam giác ABC có AB=AC . Tia phân giác của góc BAC cắt cạnh BC tại M . Đường thẳng qua M vuông góc với AB , cắt AB tại H, đường thẳng qua M , vuông góc với AC , cắt AC tại K. Chứng minh tam giác AMB= AMC
Tam giác AHM=AKM từ đo so sánh 2 đoạn thẳng AH và AK