Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Trần
Xem chi tiết
Linh Nhi
8 tháng 8 2019 lúc 17:21

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

Moon
Xem chi tiết
Bùi Minh Anh
8 tháng 8 2021 lúc 20:16

Ta có :

\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Trần Quỳnh Anh
Xem chi tiết
Phạm Thị Mỹ Duyên
Xem chi tiết
Ran Mori
16 tháng 10 2018 lúc 12:43

\(\frac{bz-cy}{a}\)\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)\(\frac{cay-cbx}{c^2}\)

Áp dụng t/c ãy tỉ số bằng nhau, ta có:

Bùi Tú Uyên
Xem chi tiết
Vũ Nhật Minh
7 tháng 1 2016 lúc 12:03

mình ngại làm ra lắm bạn có thể mở bài 88 trang 29 sách nâng cao và một số chuyên đề toán 7

lời giải trang 94 nhé

tích luôn cho mình nha

nguyen thi lan anh
23 tháng 2 2016 lúc 20:50

mk ko co quyen sach nang cao va 1so chuyen de toan

Andy Đức Anh
Xem chi tiết
Hai Trieu
Xem chi tiết
Haruhi_Song ngư
Xem chi tiết
Xyz OLM
4 tháng 12 2020 lúc 20:42

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

                                                                                      \(=\frac{0}{a^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)

Khách vãng lai đã xóa
ỵyjfdfj
Xem chi tiết