cho x/a=y/b=z/c hãy chứng minh bz-cy/a=cx-az/b=ay-bx/c
Biết bz-cy/a = cx-az/b = ay-bx/c . Chứng minh rằng x : y : z = a : b : c
ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041
cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\) chứng minh rằng :\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Ta có :
\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)
\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)
Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
bz—cy/a=cx—az/b=ay—bx/c (a,b,c#0). Chứng minh rằng x/a=y/b=z/c
1 ) Cho bz-cy/a = cx-az/b = ay-bx/c
Chứng minh x; y; z tỉ lê với a;b;c
\(\frac{bz-cy}{a}\)= \(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)= \(\frac{cay-cbx}{c^2}\)
Áp dụng t/c ãy tỉ số bằng nhau, ta có:
Biết bz-cy/a=cx-az/b=ay-bx/c ( a,b,c khác 0). Chứng minh rằng: x/a=y/b=z/c
mình ngại làm ra lắm bạn có thể mở bài 88 trang 29 sách nâng cao và một số chuyên đề toán 7
lời giải trang 94 nhé
tích luôn cho mình nha
mk ko co quyen sach nang cao va 1so chuyen de toan
Cho bz-cy/a=cx-az/b=ay-bx/c. Chứng minh rằng x/a=y/b=z/c
Mong mọi người giúp đỡ nha
Chứng minh rằng:
Nếu bz-cy/a = cx-az/b = ay-bx/c
thì x/a = y/b = z/c
Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)
Cho các số a, b, c, x, y, z Thỏa mãn điều kiện: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng:
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)