Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Huyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 21:42

Bài 6:

Xét ΔOAC vuông tại A và ΔOBD vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)

Do đó: ΔOAC=ΔOBD

=>OC=OD

Bài 7:

a: Ta có: \(\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=180^0\)

=>\(\widehat{DAB}+\widehat{CAE}+90^0=180^0\)

=>\(\widehat{DAB}+\widehat{CAE}=90^0\)

mà \(\widehat{DAB}+\widehat{DBA}=90^0\)

nên \(\widehat{DBA}=\widehat{CAE}\)

Xét ΔABD vuông tại A và D và ΔCAE vuông tại E có

AB=AC

\(\widehat{DBA}=\widehat{EAC}\)

Do đó: ΔABD=ΔCAE

b: ta có: ΔABD=ΔCAE

=>DB=AE và AD=CE

DB+CE=DA+AE=DE

Thiện Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 13:46

1: vecto AC=(-1;-7)

=>VTPT là (-7;1)

PTTS là:

x=3-t và y=6-7t

Phương trình AC là:

-7(x-3)+1(y-6)=0

=>-7x+21+y-6=0

=>-7x+y+15=0

2: Tọa độ M là:

x=(3+2)/2=2,5 và y=(6-1)/2=2,5

PTTQ đường trung trực của AC là:

-7(x-2,5)+1(y-2,5)=0

=>-7x+17,5+y-2,5=0

=>-7x+y+15=0

3: \(AB=\sqrt{\left(-1-3\right)^2+\left(3-6\right)^2}=5\)

Phương trình (A) là:

(x-3)^2+(y-6)^2=AB^2=25

 

LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 22:49

4.

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(S=\sum\dfrac{\dfrac{1}{y^2}}{\dfrac{1}{x}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}=\sum\dfrac{x^3}{x^2+y^2}=\sum\left(x-\dfrac{xy^2}{x^2+y^2}\right)\)

\(S\ge\sum\left(x-\dfrac{xy^2}{2xy}\right)=\sum\left(x-\dfrac{y}{2}\right)=\dfrac{x+y+z}{2}=\dfrac{3}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 22:52

5.

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

Đặt vế trái là P

\(P=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)

Quay lại dòng 3 của bài số 4

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 23:17

6.

Do a;b;c không âm, ta có:

\(b^2\left(b-1\right)^2\left(b+2\right)\ge0\)

\(\Leftrightarrow b^5-3b^3+2b^2\ge0\)

\(\Leftrightarrow b^5-3b^3+2b^2-6\ge-6\)

\(\Leftrightarrow-\left(3-b^2\right)\left(b^3+2\right)\ge-6\)

\(\Leftrightarrow6\ge\left(3-b^2\right)\left(b^3+2\right)\)

\(\Rightarrow\dfrac{1}{b^3+2}\ge\dfrac{3-b^2}{6}\)

\(\Rightarrow\dfrac{a}{b^3+2}\ge\dfrac{a\left(3-b^2\right)}{6}\)

Tương tự: \(\dfrac{b}{c^3+2}\ge\dfrac{b\left(3-c^2\right)}{6}\) ; \(\dfrac{c}{a^3+2}\ge\dfrac{c\left(3-a^2\right)}{6}\)

Cộng vế: \(P\ge\dfrac{a+b+c}{2}-\dfrac{ab^2+bc^2+ca^2+abc}{6}=\dfrac{3}{2}-\dfrac{ab^2+bc^2+ca^2+abc}{6}\)

Không mất tính tổng quát, giả sử \(b=mid\left\{a;b;c\right\}\)

\(\left(b-a\right)\left(b-c\right)\le0\)

\(\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\)

\(\Rightarrow ab^2+bc^2+ca^2+abc\le bc^2+a^2b+2abc=b\left(a+c\right)^2=4b\left(\dfrac{a+c}{2}\right)\left(\dfrac{a+c}{2}\right)\le\dfrac{4}{27}\left(a+b+c\right)^3=4\)

\(\Rightarrow P\ge\dfrac{3}{2}-\dfrac{4}{6}=\dfrac{5}{6}\)

vuongnhatbac
Xem chi tiết
Hoàng kim anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 22:17

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 22:24

Bài 6:

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\\ y^3=34+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\\ \Leftrightarrow P=x^3-3x+y^3-3y+1980=6+34+1980=2020\)

Đào Gia Hưng
3 tháng 1 2022 lúc 14:12

gfrưerrrrrrrrrrr

Khách vãng lai đã xóa
Vũ Thị Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 19:55

Bài 16: 

a: Ta có: \(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

\(=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}:\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\)

\(=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{-2\sqrt{a}-2}\)

\(=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{-2\left(\sqrt{a}+1\right)}\)

\(=-\sqrt{ab}\)

Trần Bảo Hân
Xem chi tiết
Lê Song Phương
27 tháng 9 2023 lúc 18:04

 Ta thấy tổng các chữ số của số \(\overline{ababab4}\) là \(a+b+a+b+a+b+4\)

\(=3a+3b+4\).

 Do \(3a,3b⋮3\) và 4 không chia hết cho 3 nên \(3a+3b+4⋮̸3\). Điều này có nghĩa là số \(\overline{ababab4}\) không thể chia hết cho 3 dù a, b có là chữ số nào. Vì thế, không tồn tại chữ số a, b nào để \(\overline{ababab4}\) chia hết cho 72.

Trần Bảo Hân
28 tháng 9 2023 lúc 19:41

em cảm ơn ahhhh

Trần Bảo Hân
28 tháng 9 2023 lúc 19:43

em hỏi xíu là vì sao lại xét dấu hiệu chia hết cho 3 ạ?

23- Đào Thu Huyền
Xem chi tiết
Lê Nguyễn Thanh Hà
Xem chi tiết